Number 7
OPTIMAL BINARY SEARCH TREES

Suppose we are given a set of n keys, K1 < Ky < ... < K,, which are to be stored in a binary
search tree. After the tree has been constructed, only search operations will be performed — there
will be no insertions or deletions. We are also given a probability density function P, where P(¢)
is the probability of searching for key K;. There are many different binary search trees in which
the n given keys can be stored. For a particular tree T" with these keys, the average number of
comparisons to find a key, for the given probability density P, is

Zn:P(i) - (depthy (K;) + 1),

with depth(K;) denoting the depth of the node where K; is stored in 7. The problem we would
like to solve is to find, among all the possible binary search trees that contain the n keys, one which
minimises this quantity. Such a tree is called an optimal binary search tree. Note that there may
be several optimal binary search trees for the given density function. This is why we speak of an
optimal, rather than the optimum, binary search tree.

A simple way to accomplish this is to try out all possible binary trees with n nodes, computing
the average number of comparisons to find a key in each tree considered, and selecting a tree with the
minimum average. Unfortunately, this simple strategy is ridiculously inefficient because there are
too many trees to try out. In particular, there are (27;“)/(71 + 1) different binary trees with n nodes
(if interested in the derivation of this formula, see Knuth, The Art of Computer Programming,
Volume 1: Fundamental Algorithms, pp. 388-389). Thus, if there are 20 keys, we have to try
out 131,282,408,400 different trees. Computing the average number of comparisons in each at the
rather astonishing speed of 1 usec per tree, will still take 2188 hours or approximately 91 days and
nights of computing to find the optimal binary search tree (for just 20 keys)! Fortunately, there is
a much more efficient, if less straightforward, way to find an optimal binary search tree.

Let T be a binary search tree that contains keys K;, K;y1,..., K; for some 1 <7 < j < n.
We shall see shortly why it is useful to consider trees that contain subsets of successive keys. We
define the cost of T', ¢(T), as

c(T) = ZJ:P(I) - (depthy (Ky) +1).

Hence, if T' contains all n keys (so ¢ =1 and j = n), the cost of T' is precisely the expected number
of comparisons to find a key for the given density function.f Thus, we can rephrase our problem
as follows: Given a density function for the n keys, find a minimum cost tree with n nodes.

Before giving the algorithm to find an optimal binary search tree, we prove two key facts.
Lemma 1. Let T be a binary search tree containing keys K;, K41, ..., K;, and let Ty, and Tg be
the left and right subtrees of T respectively. Then,

J
o(T) = e(Ty) + c(Tr) + Y _ P(I).

=1

i This is not so if T is missing some of the keys, because in that case the probabilities of the
keys that are in 7" do not sum up to 1; then, P is not a proper density function relative to the set
of keys in the tree.

33



Proor: This is an easy consequence of the definition of cost of a tree. You should prove it on your
own. U

Lemma 2. Let T be a binary search tree that has minimum cost among all trees containing
keys K;, Kit1,...,K;, and let K,, be the key at the root of T' (so i < m < j). Then Ty, the
left subtree of T, is a binary search tree that has minimum cost among all trees containing keys
K, Kit1,..., Kn_1, and Tg, the right subtree of T, is a binary search tree that has minimum cost
among all trees containing keys K41, Kpto,..., K;.

ProOOF: Proof: We prove the contrapositive. That is, if either the left or right subtree of T fails
to satisfy the property asserted in the lemma we show that T does not really have the minimum
possible cost among all trees that contain K;, Ki4q,..., K;.

Let T} and Tp be minimum cost binary search trees that contain keys K;, K;t1q1,..., K4
and keys K41, Kimt1, - .., Kj respectively. Then, ¢(T}) < ¢(T7) and ¢(Tg) < ¢(Tg).

Further, let 7" be the tree with key K,, in the root, and left and right subtrees 7] and T},
respectively. Evidently, 7' is a binary search tree that contains keys K;, K;y1,...,K;. If T, or
Tr do not have the property asserted by the lemma, then either ¢(17) > ¢(17]) or ¢(Tr) > c(T},).
This, together with the inequalities stated in the previous paragraph, implies that ¢(77) 4 ¢(Tr) >
c(T}) + ¢(TF). From this and Lemma 1 we have

o(T) = e(TL) + c(Tr) + Y _ P(I) > ¢(T}) + ¢(Tk) + Y _ P(l) = o(T").

Thus, ¢(T) > ¢(T"), and T is not a minimum cost binary search tree among all trees that contain
keys K, Kiy1,. .., I(j. ]

Computing an Optimal Binary Search Tree

Lemma 2 is the basis of an efficient algorithm to find an optimal binary search tree. Let T; ; denote
a binary search tree that has minimum cost among all trees that contain keys K;, K;11,..., Kj;.
Lemma 2 then says that T; ; must have as its root the key K, for some m, and as its left and right
subtrees T ,,_1 and Ty, 41 ; — minimum cost subtrees containing the keys K;, Ki41,..., K —1 and
Kpi1, Kimyo, ..., K; respectively. Thus, tree T; ; has the form shown in Figure 1. Since 75 ,,_;
and Ty, 41 ; are “smaller” trees than 7; ;, this suggests an inductive procedure, starting with small
minimum cost trees (each containing just one key) and progressively building larger and larger
minimum cost trees, until we have a minimum cost tree with n nodes — which is what we are
looking for.

Figure 1

34



More specifically, we start the induction with minimum cost trees each containing exactly one
key, and proceed by constructing minimum cost trees with 2,3, ..., n successive keys. Note that
there are exactly n — d + 1 groups of d successive keys, for 1 < d < n. Thus, instead of considering
all possible trees with n nodes we consider only n (minimum cost) trees with 1 node each, then
n — 1 (minimum cost) trees with 2 nodes each, and so on, down to 1 minimum cost tree with
n nodes; that is, we consider a total of n(n + 1)/2 trees — much fewer than (*")/(n + 1) trees.

So now the question is how to construct each 7; ; by induction on d = j — 4 4 1, the number
of keys it contains. The basis of the induction, d = 1, is trivial. In this case we have 7 = 7 and the
minimum cost binary search tree 7} ; that stores K; (in fact the only such tree) is a single node
containing K. Its cost is ¢(T; ;) = P(1).

For the induction step, assume that, for some d > 1, we have already constructed and computed
the costs of all the minimum cost trees with fewer than d successive keys. Now we want to construct
and compute the cost of all minimum cost trees with exactly d successive keys. Consider such a
tree T; ; (hence, j —i+ 1 = d). Let T}, ; be the tree with K, in the root, and left and right
subtrees T} ,, _1 and T, 41 ; respectively. Lemma 2 implies that 77 ; is the minimum cost tree among
the T; ., ;’s. Thus we can find 7; ; simply by trying out all the T} ,,, ;’s, form = ¢,7+1,...,7. In
fact, Lemma 1 tells us how to compute ¢(7},, ;) efficiently, so that “trying out” each possible m
will not take too long. Since T ,,_; and T),41 ; both have fewer than d keys, we have already
(inductively) computed 7} ,,—1 and Ty,4; ; and their costs, ¢(7im—1) and c(T)n41,;). Lemma 1
then tells us how to get ¢(7;,, ;) in terms of these. Note that when m = ¢ the left subtree of 1} ,, ;
is T ;—1, and when m = j the right subtree of 1} ,,, ; is 141 ;. We define T} ; to be empty if ¢ > 7,
and we define the cost of an empty tree to be 0.

Figure 2 shows this algorithm in pseudo-code. The algorithm takes as input an array Prob[1..n],
which specifies the probability density (Prob[i] = P(i)). It computes two two-dimensional arrays,
Root and Cost, where Root[i, j] is the root of T; ;, and Cost[i, j] = ¢(T;;), for all i and j such
that 1 <4 < j < n.f To help compute Root and Cost the algorithm maintains a third array,
SumO f Prob, where SumO f Prob[i] = Y= P(l) for 1 < i < n, and SumO fProb[0] = 0. Note
that >°7_, P(l) = SumO fProb[j] — SumO f Prob[i — 1].

The algorithm of Figure 2 does not explicitly construct an optimal binary search tree, but such
a tree is implicit in the information in array Root. As an exercise you should write an algorithm

which, given Root and an array Keys[l..n], such that Keys[i] = K;, constructs an optimal binary
search tree.

It is easy to see that the time complexity of this algorithm is dominated by the number of
times the innermost (for m) loop is executed. This is

Zd(n— d)y=n*(n+1)/2—n(n+1)2n+1)/6 =n(n+1)(n—1)/6

which is in ©(n?). A slight modification of this algorithm leads to an algorithm with complexity
in ©(n?) (if interested, see D.E. Knuth, “Optimum binary search trees”, Acta Informatica, Vol. 1
(1971), pp. 14-25.)

i For technical reasons that will become apparent when you look at the algorithm carefully, we
need to set Cost[i,i — 1] =0 for 1 <7 < n+ 1. Recall that T} ;_; is empty and thus has cost 0.

35



OptimalBST(Prob[1..n])

% Initialisation %
SumO f Prob[0] := 0

for::=1tondo
SumO f Prob[i] := Prob[i] + SumO f Prob[i — 1]
Root[i,i] := 1
Cost[i, 1] := Probli]

end for

fori:=1ton+1do
Cost[i,i — 1] := 0
end for

% Compute information about trees with d > 1 successive keys. %
for d := 2 to n do
% Compute Root[i, j] and C'ost[i, j] for each i and j with j —i+1=d. %

for::=1ton—-d+1do
j=1+d-1
MinCost := +oco

% Find m between 7 and j so that ¢(T5 ., ;) is minimised. %

for m := 1 to j do
c = Costli,m — 1] + Cost[m + 1, 7] + (SumO f Prob[j] — SumO f Prob[i — 1])
if ¢ < MinCost then
MinCost := ¢
ri=m
end if
end for
Root[i, 7] == r
Cost[i, j] := MinCost
end for
end for

Algorithm for Optimal Binary Search Tree
Figure 2

Unsuccessful Searches

In the preceding discussion we have only considered successful searches. However, if we take
into account unsuccessful searches, it is possible that the constructed tree is no longer optimal.
Fortunately, this problem can be taken care of in a straightforward manner. To find an optimal
binary search tree in the case where both successful and unsuccessful searches are taken into account,
we must know the probability density for both successful and unsuccessful searches. So, in addition
to P(i) we must also be given @(7) for 0 < ¢ < n, where
e ()(0) is the probability of searching for keys less than Ky;
e ()(7) is the probability of searching for keys between K; and K;4; (exclusive), for 1 < ¢ < n;
Q(

e ()(n) is the probability of searching for keys greater than K.

36



Thus, () describes the probability of unsuccessful searches.

In each binary search tree containing Ki, Ko, ..., K, we add n+ 1 external nodes Fy, F1, ...,
FE,. This is illustrated below, in Figure 3; the external nodes are drawn in boxes, as usual.

E, Es
Figure 3

The average number of comparisons for a successful or unsuccessful search in such a tree T is

Z P(i) - (depthy(Ky) + 1) + Y Q(i) - depthy (E3).

=0

The left term is the average number of comparisons for successful searches, and the right term is
the average number of comparisons for unsuccessful searches. Now we want to find a tree that
minimises this quantity.

We can proceed exactly as before, except that the definition of the cost of a tree T" with keys

Ki, Kiy1,...,K; is slightly modified to account for the unsuccessful searches. Namely, it becomes
J J
(T = ZP(I) - (depthp (Ky) + 1)+ Z Q1) - depthp (E)).
=1 I=i—1

With this cost function, Lemma 1 is slightly different:

Lemma 1'. Let T be a binary search tree containing keys K;, K11, ..., K;, and let T, and T'r be
the left and right subtrees of T respectively. Then,

(1) = ¢(TL) + ¢ (Tr) + Qi = 1) + Y _(P(D) + QD).

=1

Everything else works out exactly as before. In particular, Lemma 2 is still valid (check this!). As
an exercise show how to modify the algorithm in Figure 2 to account for these changes.

37



