

California State University, Sacramento’s

 PC2
Version 9.7

Contest Administrator’s

Installation and

Configuration Guide

<Last Update: March 16, 2021>

INTERNATIONAL COLLEGIATE

PROGRAMMING CONTEST

PC2 Administrator’s Guide 1 http://pc2.ecs.csus.edu/

Table of Contents

1 Introduction ... 5

1.1 Overview .. 5

1.2 Compatibility Note .. 6

1.3 References .. 6

2 Getting Started .. 7

2.1 Server Startup ... 7

2.2 Admin Startup ... 7

2.3 Contest Configuration .. 8

2.4 Team Startup ... 8

2.5 Judge Startup .. 9

2.6 Scoreboard Startup .. 9

2.7 Starting the Contest.. 10

2.8 Additional Information .. 10

3 Installation Details .. 12

3.1 Installation ... 12

3.2 Network / Firewall Requirements .. 12

3.3 Memory Limits .. 13

3.4 Security Alerts .. 14

3.5 Uninstall ... 14

4 PC2 Initialization Files ... 16

4.1 The pc2v9.ini file .. 16

4.2 Other Initialization Files ... 18

5 PC2 Startup Procedures .. 19

5.1 Built-in Commands ... 19

5.2 Server Startup ... 20
5.2.1 Non-GUI Server Startup .. 22

5.3 Server GUI Controls.. 22
5.3.1 Adding Sites .. 23
5.3.2 Restarting / Reconnecting Servers .. 24
5.3.3 Connections and Logins .. 26

PC2 Administrator’s Guide 2 http://pc2.ecs.csus.edu/

5.3.4 Additional Server GUI Controls ... 26

5.4 Starting Clients ... 26

5.5 Contest Profiles .. 27

6 Interactive Contest Configuration ... 32

6.1 Administrator Login.. 32

6.2 User Accounts .. 33
6.2.1 Account Creation ... 33
6.2.2 Account Names and Passwords .. 34
6.2.3 Loading Account Data ... 37
6.2.4 Importing ICPC Data ... 38

6.3 Contest Problems ... 39
6.3.1 Defining a Problem .. 39
6.3.2 Multiple Test Data Files ... 43
6.3.3 Defining Judging Type ... 45
6.3.4 Assigning Auto Judging to Judge modules 46

6.4 Contest Languages.. 50
6.4.1 Defining a Language ... 50
6.4.2 Command Parameter Substitutions ... 53
6.4.3 Language Definition Examples .. 53
6.4.4 Language Definitions In Multi-Site Contests 55

6.5 Contest Judgments ... 57
6.5.1 Defining a New Judgment ... 57
6.5.2 Changing Existing Judgments ... 58

6.6 Balloon Notifications .. 59
6.6.1 Defining Balloon Notifications .. 60
6.6.2 Email Server Advanced Settings ... 61

6.7 Options (Settings tab) .. 62

6.8 Sites ... 65

7 Configuring the Contest via Configuration Files 66

7.1 Loading Configuration Files via the PC2 Server 66

7.2 Loading Configuration Files via the PC2 Admin 67

7.3 Additional Configuration File Capabilities .. 67

8 Starting the Contest ... 69

8.1 Clock Control .. 69
8.1.1 Starting the Contest Manually ... 69
8.1.2 Starting the Contest Automatically .. 70

8.2 Contest Length ... 71

PC2 Administrator’s Guide 3 http://pc2.ecs.csus.edu/

8.3 Multi-Site Clock Control ... 72

8.4 Practice Sessions: Resetting A Contest .. 74

9 Monitoring Contest Status ... 76

9.1 Team Startup Status ... 76

9.2 The Runs Display .. 77

9.3 Editing Runs .. 78
9.3.1 Extracting Runs ... 80

9.4 Filtering Runs ... 81

9.5 Clarifications ... 82

9.6 Reports .. 83
9.6.1 Automatic Generation of Reports at End of Contest 83

9.7 Event Feed ... 85

9.8 Web Services .. 85

10 The PC2 Scoreboard ... 86

10.1 Overview .. 86

10.2 Scoring Algorithm... 86

10.3 Configuring Scoring Properties .. 87

10.4 Starting the Scoreboard ... 88

10.5 Scoreboard Updates ... 90

10.6 Scoreboard HTML Files .. 90

10.7 Scoring Groups ... 92

10.8 Managing HTML File Generation ... 93

10.9 No-GUI Mode ... 95

11 Finishing the Contest ... 96

11.1 Finalizing ... 96

11.2 Exporting Contest Results ... 97
11.2.1 Generating a results.tsv export file .. 97
11.2.2 Generating a pc2export.dat export file... 97

11.3 Shutting Down .. 97

Appendix A – pc2v9.ini Attributes ... 99

Appendix B – Networking Constraints .. 101

Appendix C – PC2 Server Command Line Arguments 103

PC2 Administrator’s Guide 4 http://pc2.ecs.csus.edu/

Appendix D – ICPC Import/Export Interfaces...................................... 105

Appendix E – Output Validators .. 111

Appendix F – Language Definitions .. 124

Appendix G – Using the PC2 API ... 129

Appendix H – Troubleshooting / Getting Help 130

Appendix I – PC2 Distribution Contents .. 131

Appendix J – Log files .. 132

Appendix K – Reports Program ... 133

Appendix L – PC2 XML (Legacy) Event Feed .. 136

Appendix M – PC2 Web Services ... 140

Appendix N – PC2 Team Clients ... 143

Appendix O – Input Validators ... 146

Appendix P – reject.ini ... 153

Appendix Q – GUI Customization .. 155

Appendix R – Shadow Mode .. 157

PC2 Administrator’s Guide 5 http://pc2.ecs.csus.edu/

1 Introduction

1.1 Overview

PC2 is a dynamic, distributed real-time system designed to manage and control Programming
Contests. It includes support for multi-site contests, heterogeneous platform operations including
mixed Windows and Unix in a single contest, and dynamic real-time updates of contest status and
standings to all sites. This manual describes the steps required to install, configure, and run a contest
using PC2. Further information on PC2, including how to obtain a copy of the system, can be found
at http://pc2.ecs.csus.edu/.

PC2 operates using a client-server architecture. Each site in a contest runs a single PC2

server, and also runs multiple PC2 clients which communicate with the site server.1 Logging into a
client using one of several different types of PC2 accounts (Administrator, Team, Judge, or
Scoreboard) enables that client to perform common contest operations associated with the account
type, such as contest configuration and control (Administrator), submitting contestant programs
(Team), judging submissions (Judge), and maintaining the current contest standings (Scoreboard).

PC2 clients communicate only with the server at their site, regardless of the number of sites

in the contest. In a multi-site contest, site servers communicate not only with their own clients but
also with other site servers, in order to keep track of global contest state. The following
communication requirements must therefore be met in order to run a contest using PC2: (1) a
machine running a PC2 server must be able to communicate via TCP/IP with every machine running
a PC2 client at its site; and (2) in a multi-site contest, every machine running a PC2 server must either
be able to communicate via TCP/IP with the machines running PC2 servers at every other site or else
must indicate that it requires “proxy support” from another server. In particular, for servers which
do not request proxy support, there must not be any firewalls which prohibit communication with
other servers; the system will not operate if this communication is blocked.2 It is not necessary for
client machines to be able to contact machines at other sites.

Each PC2 module (server or client) reads one or more initialization files when it starts; these

files are used to configure the module at startup. The client module also tailors its configuration
when a user (Team, Judge, etc.) logs in. In a typical PC2 contest configuration, each Team, Judge,
etc. uses a separate physical machine, and each of these machines runs exactly one client module.
It is possible to have multiple clients running on the same physical machine, for example by having
different users logging in to different accounts on a shared machine. In this case, each user (Team,
Judge, etc.) will be executing their own “Java Virtual Machine (JVM)”, and must have their own
separate directory structure – including their own separate copy of the PC2 initialization files in their
account.

1 Note that “site” refers to a logical grouping of contest participants, not (necessarily) a physical or geographic grouping.

It is perfectly possible for participants at physically or geographically separate locations to collectively represent one
PC2 “site” and to be served by a single “site server”; it is quite common to run an entire contest using a single site
server regardless of whether or not the teams, judges, etc. are physically close. Multi-site operations are primarily
supported for situations where network connectivity is highly unreliable.

2 See the Appendix titled “Networking Constraints” for further details on using PC2 over networks.

PC2 Administrator’s Guide 6 http://pc2.ecs.csus.edu/

Setting up and running a contest using PC2 involves the following steps: (1) installing Java
and PC2 on the contest machines; (2) creating/editing the necessary initialization files; (3) starting
the server(s) and clients(s); (4) configuring PC2 for the contest via an Administrator client; and (5)
starting the contest so that users (Teams and Judges) can log in. These steps are listed in checklist
form in the next chapter, and are described in detail in the remainder of this manual.

1.2 Compatibility Note

Starting with Version 9.3, the PC2 system contains substantial new enhancements which are
incompatible with earlier versions of the system. Users should not “mix” components of PC2 V9.3+
with earlier versions (9.2.x and below).

1.3 References

While this manual tries to give a complete description of installing and using PC2, the
following web references may provide additional helpful information. In particular, the PC2 Wiki
is updated much more frequently than this manual and should be consulted frequently for answers
to questions.

PC2 home page
http://pc2.ecs.csus.edu/

PC2 Wiki – up to date articles and information about PC2

http://pc2.ecs.csus.edu/wiki/Main_Page

PC2 Bugzilla - enhancement and defect tracking and reporting for PC2

http://pc2.ecs.csus.edu/bugzilla/

PC2 Administrator’s Guide 7 http://pc2.ecs.csus.edu/

2 Getting Started

For those people who hate to read manuals and would rather take a chance with a shortcut

list, this chapter provides a (somewhat terse) summary of the steps necessary to install PC2 and get
it running for your contest. Please note that this chapter does not provide all the details; it is intended
to give readers a general overview of the process of using PC2 to run a contest. Please refer to the
subsequent chapters for necessary additional details.

2.1 Server Startup

Each contest site is controlled by a “site server” (or just “server” for short).3 Perform the
following steps to install and start a PC2 site server (see the chapter on Installation Details, as
well as the chapter on Startup Procedures and the Appendices, for further details).

 Install Java (version 1.8 or greater) on the machine which will act as your PC2 Server;
ensure the Java bin directory is in the PATH.

 Download the latest PC2 distribution from https://pc2.ecs.csus.edu/. Install PC² by
unzipping the PC² distribution to a directory of your choice.

 Add the PC² bin directory to the PATH.

 Start a PC² server using the command “pc2server”.

 Login using the name “site1” and password “site1”.

 Enter a contest password (this contest security password will be required to be reentered
for all subsequent server startups).

2.2 Admin Startup

Overall contest management is controlled through the PC2 “Administrator Client” or
“Admin” for short. Perform the following steps to get the PC2 Admin running.

 If you are going to run the PC2 Admin on a different machine than the one running the PC2
Server, then on the Admin machine follow the above steps regarding installing Java,
downloading/unzipping the PC2 distribution, and setting the PATH values.

 If the Admin is on a separate machine from the Server, edit the pc2v9.ini file on the
Admin machine, replacing “localhost” in the [client] section with the IP address of the
Server machine.

 Start the PC² Admin using the command "pc2admin" and login using the name "root" and
password "administrator1"

3 See the previous footnote regarding the definition of “contest site”.

PC2 Administrator’s Guide 8 http://pc2.ecs.csus.edu/

2.3 Contest Configuration

Use the PC2 Admin to configure at least the following contest items by selecting the
correspondingly-named tab on the Admin Configure Contest screen: 4

 Accounts: generate the necessary accounts – minimally, you’ll need to generate one
account for each team, one or more judge accounts, and a scoreboard account (see the
section on User Accounts in the chapter on Interactive Contest Configuration for further
details).

You may also want to generate additional judge accounts for “auto-judging” (see the
section on Contest Problems in the chapter on Interactive Contest Configuration for further
details), and you may want to generate a “feeder” account for external tools accessing PC2
(see the Event Feed and Web Services sections in the chapter on Monitoring Contest Status
for further details).

 Problems: define one or more contest problems, specifying the problem input data file(s)
(if the problems require input data), the judging type, and the “validator specification” (if
the problems are to be “auto-judged”). See the section on Contest Problems in the chapter
on Interactive Contest Configuration for further details.

 Languages: define one or more contest languages, specifying the language name, compile
command line, executable filename, and program execution command line. See the section
on Contest Languages in the chapter on Interactive Contest Configuration for further
details.

Note that all configuration settings can be specified either interactively or by creating and
loading a “YAML Configuration File”. See the chapters on Interactive Contest Configuration
and Configuring the Contest via Configuration Files for information on both these options.

2.4 Team Startup

There are two methods which can be used to allow teams to login to a PC2 contest: the PC2
Team Application client and the PC2 Team Web client. Using the Team Application client
requires installing PC2 on each team machine, whereas using the Team Web client allows teams
to use a browser to connect to the contest but requires providing an external web server and
installing the PC2 Team web pages into the web server.

If you are going to use the PC2 Team Application client, perform the following steps to install
the client on each team machine:

 Follow the above steps regarding installing Java, downloading/unzipping the PC2
distribution, and setting the PATH values on each team machine.

4 Starting with Version 9.7, PC2 also supports user-customization of the images on the login screen; see the Appendix
on GUI Customization for details.

PC2 Administrator’s Guide 9 http://pc2.ecs.csus.edu/

 Edit the pc2v9.ini file on each team machine, replacing “localhost” in the [client]
section with the IP address of the PC2 Server machine.

 Start the PC² Team client using the command "pc2team" and login using the team name
and password defined under “Accounts”, above. (The default team name and password are
both “teamxx”, where “xx” is the team number.)

To use the PC2 Team Web client, see the Appendix on PC2 Team Clients.

2.5 Judge Startup

There are two methods which can be used for judging team submissions: manual and
automated (the two methods are not mutually exclusive; automated judging can be used to send
teams a “preliminary result” and can then be followed by manual [human] judging). Selecting
the type of judging is part of Contest Problem Configuration, described above and also in more
detail in the section on Contest Problems in the chapter on Interactive Contest Configuration.
In any case you will want to set up one or more judge machines.5

Perform the following steps to install the PC2 Judge client on each judge machine:

 Follow the above steps regarding installing Java, downloading/unzipping the PC2
distribution, and setting the PATH values on each judge machine.

 Edit the pc2v9.ini file on each judge machine, replacing “localhost” in the [client]
section with the IP address of the PC2 Server machine.

 Start the PC² Judge client using the command "pc2judge" and login using the judge name
and password defined under “Accounts”, above. (The default judge name and password
are both “judgexx”, where “xx” is the judge number.)

If your contest is going to use automated judging, see the section Assigning Auto Judging to
Judge Modules in the chapter on Configuring the Contest.

2.6 Scoreboard Startup

Perform the following steps to install the PC2 Scoreboard client on a machine6:

 If you are running the Scoreboard client on a different machine (one onto which PC2 has
not already been installed), follow the above steps regarding installing Java,

5 In principle judging can be done on the same machine used to run the PC2 Server or the PC2 Admin, but we don’t

recommend it because of the problem of contest administrators and judges colliding with each other trying to use the
machine.

6 Unlike the situation with judges, there only needs to be a single PC2 Scoreboard for the entire contest and it rarely
needs attention once it is started; for this reason we frequently run the scoreboard on the same machine as the PC2
Server or Admin.

PC2 Administrator’s Guide 10 http://pc2.ecs.csus.edu/

downloading/unzipping the PC2 distribution, and setting the PATH values on the
scoreboard machine.

 Edit the pc2v9.ini file on the scoreboard machine, replacing “localhost” in the [client]
section with the IP address of the PC2 Server machine.

 Start the PC² Scoreboard client using the command "pc2board" and login using the
scoreboard account name and password defined under “Accounts”, above. The default
scoreboard name and password are both “boardX”, where “X” is the number of the
scoreboard account (typically “1”).

 Arrange for the scoreboard-generated HTML files to be accessible to user’s browsers. See
the section Scoreboard HTML Files in the chapter on the PC2 Scoreboard for further
details.

2.7 Starting the Contest

The contest can be started either manually, or automatically at some scheduled time. The
length of the contest can be configured, and contests can be “reset” (e.g., between Practice and
Real contests). See the chapter on Starting the Contest for additional information.

 To start the contest manually, press the "Start ALL" button on the Administrator module
Times tab. This will allow teams to submit runs, judges to fetch and judge the runs, and
standings to be posted on the scoreboard, and will use the PC2 default contest length of 5
hours.

2.8 Additional Information

The above will hopefully provide enough information to allow you to get a contest going
under PC2. Note however, that it omits many details, including alternative configuration options,
additional features, and so forth. For example, it does not take into account any of the following
PC2 capabilities:

 Use of external interfaces such as the Event Feed and PC2 Web Services

 Command-line submission of runs by teams

 Generation of PC2 Reports describing system information

 Monitoring team status during the contest

 Examining/editing/judging runs during the contest

 Importing contest configuration information from data files

 Exporting final results to other systems

 Configuring multi-site contests

 Creating different "scoring groups" on the Scoreboard

PC2 Administrator’s Guide 11 http://pc2.ecs.csus.edu/

 Creating customized HTML scoreboard output

 Running PC2 modules in "no-gui" mode

 Using "Profiles" to switch between contest configurations

 Handling security alerts

 Details of configuring contest problems (things like validators for automated judging,
handling very large data files, etc.)

 Contest language configuration details

 Defining judgement messages

 Sending "balloon notifications" for correct submissions

 Configuration options such as maximum allowed team output, information displayed
to judges, editing scoring properties, etc.

 Programmatic access to PC2 via the PC2 API

These things and many more are covered in the rest of this manual, and also on our Wiki at
https://pc2.ecs.csus.edu/wiki.

PC2 Administrator’s Guide 12 http://pc2.ecs.csus.edu/

3 Installation Details

In the event that the preceding chapter is a bit too terse, the remainder of this manual
discusses the details of using PC2 to configure and run a contest. The first step is to install the
necessary software, as described in this chapter. The remaining chapters cover initialization files,
starting the system, configuring the system for a contest, starting and monitoring the contest, and
using the PC2 scoreboard. In addition several appendices cover details of certain topics.

3.1 Installation

1. Install the Java Standard Edition (SE) Software Development Kit (SDK) or Java Runtime
Environment (JRE), version 1.8 or later on each machine. The remainder of this manual
assumes that “$JAVAHOME” represents the SDK installation directory. We recommend
using 64-bit Java, in particular for the PC2 Server and (if
used) the Web Team Interface client.

2. Ensure “$JAVAHOME/bin” is contained in the PATH environment variable on each
machine (i.e., for each user).

3. Go to the PC2 home page (see Chapter 1, under References), navigate to the “Download”
page, and download the latest PC2 “.zip” or “.tar.gz” file to the directory where you wish
to install PC2 (this can be any directory of your choice).

4. Unzip the downloaded file, being sure to tell the unzip program to “retain directory
hierarchy” and “preserve case sensitivity”. This will create a directory named (for
example) pc2-9.7.0, which for the remainder of this manual we refer to as the $PC2HOME
directory. The $PC2HOME directory contains bin, lib, doc, samps and other directories,
plus a default “pc2v9.ini” file (see the following chapter) along with several text files
giving basic information such as the system version number. The doc and samps
directories contain the system documentation and a variety of sample scripts, files, and
other goodies you might want to examine. The file “doc/index.html” can be used to
browse the documentation. (NOTE: all files and directories which comprise a PC2
distribution (.zip or .tar.gz file) will unzip into the $PC2HOME directory. See the
appendices for a complete description of PC2 distribution contents.)

5. Add the PC2 “bin” directory (that is, the directory $PC2HOME/bin) to the PATH
environment variable on each machine.

3.2 Network / Firewall Requirements

Here are the PC2 firewall requirements; see also the Appendix “Networking Constraints”.

1. PC2 Clients need to be allowed to make outbound connections to their server; hence
servers need to be open to inbound connections from the clients.

2. PC2 Servers need to be allowed to make outbound connections to all other servers.

PC2 Administrator’s Guide 13 http://pc2.ecs.csus.edu/

3. PC2 Servers either need to be open to inbound connections from all other servers, or
else need to specify that another server is going to act as a “proxy” for inbound
connections (see the Chapter on PC2 Initialization Files and the Appendix on
Networking Constraints for information on how to set up proxy servers).

3.3 Memory Limits

PC2 is written in Java and therefore inherits all the features (good and bad) of that language.
Although Java is touted as “run anywhere”, the reality is that many things depend on your specific
installation – both the version of Java you are using and the underlying OS platform on which it is
running. This is particularly true when it comes to memory allocation – primarily, what Java refers
to as “Heap Space”.

Throughout this manual we describe various “commands” (scripts, batch files) that PC2

provides to invoke different functions. Most of these commands involve starting a “Java Virtual
Machine (JVM)”. Each instance of a JVM has a “maximum heap size” value associated with it; if
the Java program attempts to use more “heap space” than the maximum allowed, the program aborts
with an “out of heap space” error. This can be particularly disconcerting if it is your PC2 server (for
example) that crashes in the middle of a contest. It is therefore important to know what can be done
to avoid such memory-limit problems.

Each of the PC2 commands passes a parameter to the JVM to set the maximum heap size.
The form of this parameter is –Xmx$$$$M, where $$$$ represents the maximum heap size in
megabytes (‘M’). The heap size values used by the various scripts are conservative, intended to
insure that the command will be able to run successfully on the widest variety of platforms.

On any particular platform it is possible that the value in the script may be significantly less
that the platform is capable of supporting. It is also possible that the command value is actually
lower than the default setting which would be applied on a particular platform if no value had been
specified. This is particularly true between 32-bit and 64-bit systems.

For these reasons, you may want to determine the maximum heap size allowable on your
platform and edit the corresponding script to set a larger value (this is particularly important for a
large contest – one with a large number of teams, problems, and/or large data files, and is also
particularly important for the PC2 Server). Setting the JVM maximum heap size can significantly
increase the ability of the corresponding PC2 module to run without problems.7

The maximum heap size can be determined by running the following command on the
corresponding platform:8

7 The pc2server scripts (for both Windows and Linux) attempt to make an intelligent guess as to the type of platform

(32- or 64-bit) and set the heap size accordingly. The user can change the heap size values used by these scripts by
editing constants at the top of the pc2server script. For all the other scripts, it is necessary to edit the –Xmx parameter
in the script.

8 It may also be possible to use the parameter –XX:+AggressiveHeap to instruct the JVM to automatically force the
heap to the largest available size. However, this parameter is non-standard, may not be available on all systems, and
has not been thoroughly tested in PC2.

PC2 Administrator’s Guide 14 http://pc2.ecs.csus.edu/

Windows: java -XX:+PrintFlagsFinal -version | findstr HeapSize

Linux/MacOS: java -XX:+PrintFlagsFinal -version | grep HeapSize

3.4 Security Alerts

There are a number of security features in PC2 Version 9, including disk file encryption,
network traffic encryption and security alerts. Security alert windows will automatically appear
on server UI and Admin UI when a potential security violation or exceptional condition occurs.
For example, a security alert occurs if a PC2 client logs in successfully while the same client is
already logged in. Security information is also recorded in a security log in the logs directory.
A typical security log file will be named something like: logs/SERVER0@site1.security-
0.log. An example of the log entries is:

140812 155846.072|SEVERE|Thread-36|newMessage|SecurityException From:

ADMINISTRATOR1 @ site 1 ADMINISTRATOR1 @ site 1: duplicate login
request; previous login forced off

|edu.csus.ecs.pc2.core.exception.ContestSecurityException: ADMINISTRATOR1 @
site 1: duplicate login request; previous login forced off

| at edu.csus.ecs.pc2.core.InternalController.attemptToLogin (Unknown
Source)

| at edu.csus.ecs.pc2.core.InternalController.receiveObject (Unknown
Source)

| at edu.csus.ecs.pc2.core.transport.TransportManager$1.run (Unknown
Source)

| at java.lang.Thread.run (Thread.java:745)
140812 155846.073|SEVERE|Thread-36|newMessage|SecurityException Sec. Message:

ADMINISTRATOR1 @ site 1: duplicate login request; previous login forced
off ConnHandId Socket[addr=/127.0.0.1,port=53488,localport=50002]-
2471900182656421556

3.5 Uninstall

To uninstall PC2 do the following on each PC2 Server and client machine:

1. Use the pc2reset script to remove the contents of any PC2 directories

2. Remove the pc2v9.ini file and the archive directory.

3. Remove the $PC2HOME directory and its contents

4. Restore the system environment variables (PATH and CLASSPATH)

PC2 itself does not make any changes to any machine locations outside those listed above either
during installation or execution. In particular, for example, it makes no entries in the Registry on a

PC2 Administrator’s Guide 15 http://pc2.ecs.csus.edu/

Windows machine, nor does it copy any files to locations outside the installation directory or the
current working directory in any environment.

PC2 Administrator’s Guide 16 http://pc2.ecs.csus.edu/

4 PC2 Initialization Files

When a PC2 module (server or client) begins running, it reads an “initialization file” named
pc2v9.ini from the directory in which it was started.9 The Contest Administrator must ensure this
file is present and edited as necessary on each machine prior to starting a PC2 module.

This chapter describes the initialization files and their contents (note: some default versions
of the initialization files are provided in the samps folder of the PC2 distribution package; these must
be edited as necessary). Further descriptions of initialization files and their contents can be found
in the Appendices.

4.1 The pc2v9.ini file

Every PC2 module reads a file named “pc2v9.ini” at startup. By default each module
looks for its pc2v9.ini file in the current working directory; thus for example Team machines
would typically need to have a pc2v9.ini file in their “home” directory. (Command-line
arguments can be used to point to a different location for the pc2v9.ini file; see the Appendices
for details.)

The pc2v9.ini file provides key initialization information to the PC2 module. The file is
formatted in sections. Each section starts with a section-name in square brackets. The following
different section names are recognized: [server] and [client]. Each PC2 module reads the entire file,
but silently ignores any information which does not pertain to it (for example, server modules ignore
data in all sections except the [server] section, etc.) All lines starting with “#” or “;” are comments
and are also ignored, as are blank lines.

Each section is made up of lines containing "attribute assignment" statements of the form

 attributeName=value

The “attributeName” is a predefined string chosen from list of PC2 configuration
attributes. The “value” is the value to which the corresponding attribute is set when the pc2v9.ini
file is read by a module. No spaces are allowed in front of the “value” after the equal-sign.

Some attribute assignment statements are specific to particular sections and have no meaning
for other sections (or for the modules that read them). Other attribute assignments are relevant to
multiple sections/modules and can appear in different sections.

A complete list of the predefined attributes is given in the Appendices. Most attribute
assignments are optional and default values are used if an attribute assignment is not present in the
pc2v9.ini file. However, certain attributes must be specified in the pc2v9.ini file in order for
the system to function properly.

9 Older versions of PC2 also read files named reject.ini and sitelist.ini. However, the functionality
provided by those files is incorporated into interactive screens in the Administrator client in PC2 V9, and their use is
deprecated and scheduled for removal in a future version of the system.

PC2 Administrator’s Guide 17 http://pc2.ecs.csus.edu/

Based on these rules, a minimum sample pc2v9.ini file is shown below. Note that since
all modules ignore sections and attributes which do not apply to them, it is permissible to create a
single pc2v9.ini file containing all the required entries and put this same file on all machines at a
given site.

sample pc2v9.ini file

[client]
Tell PC2 clients where to find their server (IP and port)
server=198.51.100.50:50002

The sample pc2v9.ini file shown above would be appropriate for both client and server
machines in a single-site contest.

In a multi-site contest, the server at one of the sites is designated the “primary server” and
servers at all other sites are designated “secondary servers”. When a primary server is started, it
waits for other servers to contact it. When a secondary server is started, it automatically attempts to
contact the primary server; this is how the inter-server communication in a multi-site contest is
established. The distinction between whether a server waits to be contacted (is a primary) or initiates
remote contact (is a secondary) is in fact the only distinction between “primary” and “secondary”
servers.

In a multi-site contest exactly one of the servers should be started as a primary server (it does
not matter which site has the primary server; once communication is established all sites run as
peers). The servers at all other sites should be started as secondary servers. Designation of a server
as primary or secondary is controlled by the contents of the pc2v9.ini file.

By default (that is, in the absence of any information in the pc2v9.ini to the contrary), a
server assumes it is a primary server when it starts. Designating a server as a secondary server is
accomplished by providing an additional entry in the [server] section of the pc2v9.ini file of that
server. This additional entry, known as the remoteServer attribute, tells the secondary server the IP
address and port number at which it should attempt to contact the primary server. If this
remoteServer attribute is not present in [server] section of the pc2v9.ini file when a server starts,
the server implicitly assumes it is a primary server.

 Thus for example, the pc2v9.ini file on the primary server in a multi-site contest might
look like the sample above (since it does not contain any remoteServer attribute), whereas the
pc2v9.ini file on machines at a second site might look like:

sample pc2v9.ini for a second site

[client]
tell clients where to find their site’s server (IP and port)
server=203.0.113.7:50002

[server]
Tell this (secondary) server how to contact the primary server
remoteServer=198.51.100.50:50002

PC2 Administrator’s Guide 18 http://pc2.ecs.csus.edu/

Note that the (sample) IP address given in the [client] section of the above pc2v9.ini file
for a secondary site is the (hypothetical) IP address of the server for that site, whereas the IP address
given in the remoteServer attribute in the [server] section is the address of the primary server – the
address which the (secondary) server should use to contact the primary server and “join the contest”.

A server which is started as a primary server in a multi-site contest waits for inbound
connections from other servers; hence the primary server must allow such inbound connections
(meaning, there cannot be any firewall blocking inbound connections at the specified port on the
primary server). In a contest with more than two sites (hence, two or more secondary servers), each
secondary server will also normally attempt to contact the other secondary servers. This means that
secondary servers must likewise not have any firewall blocking inbound connections at the specified
port. However, this restriction can be overcome (that is, secondary servers can be operated with
firewalls blocking inbound connections) by using a special attribute called proxyme in the
pc2v9.ini file. See the Appendix on Networking Constraints for details on how to use this
attribute to allow firewall blocking on secondary server machines.

4.2 Other Initialization Files

For backwards compatibility, PC2 still supports two additional initialization files: reject.ini
and sites.ini. The reject.ini file was used in older versions of the system to specify the “reject
messages” which judges could send to teams when a submission failed to solve a problem, while the
sites.ini file was used to specify information for additional sites in a multi-site contest. Both of these
functions have been incorporated into the configuration mechanisms described in the chapter on
Interactive Contest Configuration, and use of these additional initialization files is deprecated and
support for them may be removed in future versions of the system.

See Appendix P for more information about the format and content of the reject.ini.

PC2 Administrator’s Guide 19 http://pc2.ecs.csus.edu/

5 PC2 Startup Procedures

5.1 Built-in Commands

Once PC2 has been installed and the necessary “.ini” files have been properly set up (i.e.,
edited and placed in the appropriate startup directory), the normal PC2 startup procedure is to start a
primary server, then start an Admin client connected to that server and use the Admin client to
configure the contest details (problems, languages, etc.). Once the contest has been fully configured
using the Admin client, secondary servers can be started at remote sites (if any), followed by
additional clients at both the primary and (in the case of a multi-site contest) secondary sites.

The PC2 distribution comes with a collection of “command scripts” designed to simplify
starting the various modules. The available command scripts and their corresponding functions are
listed below.10 To invoke the specified function, simply type the corresponding command at a
command prompt. The commands reside in the “bin” directory beneath “$PC2HOME” (the root
directory of an unzipped PC2 installation), so the normal method of invoking them would be to
change to the contest directory (that is, the directory where the contest will be run from, where logs
are to be kept, etc.), and type the command name (note that this assumes, as previously
recommended, that the $PC2HOME/bin directory has been added to the $PATH).

Command Function

pc2server Starts a PC2 Server
pc2admin Starts a PC2 Client expecting an Administrator login
pc2team Starts a PC2 Client expecting a Team login
pc2judge Starts a PC2 Client expecting a Judge login
pc2aj Starts a PC2 Judging Client (“AutoJudge”) in headless (non-GUI) mode
pc2board Starts a PC2 Client expecting a Scoreboard login
pc2submit Submits a run using a command-line interface
pc2extract Extract various information from a PC2 server
pc2ef Starts a PC2 “Event Feed/Web Services” client
pc2nc Starts a PC2 “netcat” client for analytic/debugging purposes
pc2report Generates various reports without needing the PC2 Server running
pc2reset Resets a contest, deleting all runs and (optionally) other data
pc2ver Displays the current PC2 version
pc2zip Creates a “zip” file containing all the PC2 contest data

The normal startup procedure, for example, would be to invoke the command “pc2server” to
start a server, then in a separate command window to invoke the command “pc2admin” to start an
Administrative client to be used to configure the contest details in PC2. Once the contest details are
configured, other clients can be started (as well as servers at other sites) using the appropriate
commands.

10 In a Windows environment the command scripts are all “batch files” whose names correspond to the given command
name followed by “.bat”. In a Unix environment the command scripts are all Bourne Shell scripts whose names match
the given command names. Thus the same command name can be used regardless of the underlying OS.

PC2 Administrator’s Guide 20 http://pc2.ecs.csus.edu/

Additional details on the various PC2 command scripts can be found at
http://pc2.ecs.csus.edu/wiki/PC%C2%B2_scripts.

5.2 Server Startup

When a server is started (using the command “pc2server”), the user will see a login window
similar to the following:

The default login name for the primary (first) site server is site1; the default password is also
site1 (the password can subsequently be changed; see below). Entering these values and pressing
the Login button on the above screen will initiate the login process. However, there is a second step
which must be performed to complete the login process.

At the time a server is started for Site 1 for the very first time, there is no contest-specific
information stored in the system. All contest information which is subsequently entered will be
stored in encrypted form, to protect the integrity of the contest data. In order to manage the
encryption and allow authorized access at a later time, the Contest Administrator must provide a
contest master password. Thus, on the very first login to a primary (first) server, the following
screen will appear:

PC2 Administrator’s Guide 21 http://pc2.ecs.csus.edu/

The Contest Administrator must enter (and confirm) a password to be used to perform contest
data encryption. Note that this password provides access to all contest-related data; it should be
well-chosen and well-protected. Note also that there is no default value for this password; it must
be set (chosen and confirmed) by the Contest Administrator. Entering and confirming a contest
master password (in addition to the login ID and login password) completes the login process.

If a first-site server is started again at some later point in time (i.e. after a contest master
password has been set), pressing the Login button on the server’s main login screen displays the
following screen:

At this point the user must enter the Contest Password in order to complete the login process.

Only the primary (first) server in a contest prompts for the contest master password. In a
multi-site contest the user starts a (secondary) server using the pc2server command as above, and
logs in using the default site name (for example, site2) and password (site2). The secondary server
contacts the primary server (pointed to by the remoteServer=xxx entry in its pc2v9.ini file) and
obtains the current contest master password directly from the remote server. Note that the second
server does not display the obtained contest master password; if people at secondary sites need this
password for some reason then they must obtain it from the Contest Administrator at the primary
(first) site.

PC2 Administrator’s Guide 22 http://pc2.ecs.csus.edu/

5.2.1 Non-GUI Server Startup

In some environments it may be desirable to run a PC2 server without a GUI front-end. This
can be accomplished using the –-nogui command line argument described in the appendix on Server
Command Line arguments. Note that if this option is chosen there is no GUI-based way to enter
login, account password and contest password information. These may be entered on the command
line as well. For example, to start a primary (first) server with no GUI the following command
could be used: 11

pc2server --nogui --login site1 --password site1 --contestpassword contest

To start a secondary server without a GUI in a multi-site contest the following command could
be used: 11

pc2server --nogui --login site2 --password site2

Note that since this server is presumed to be secondary (meaning it has a pc2v9.ini entry
pointing to a remote server which is the primary server), the --contestpassword option is omitted.
This is because secondary servers obtain the contest master password directly from the primary
server, as described above.

When a server is started using the --nogui option, it sends all of its output in text form to the

console window from which it was started. The following shows an example of a server started in
this way. Any subsequent text produced by the server (e.g. error messages or informational text)
would appear on subsequent lines on the console.

CSUS Programming Contest System
Version 9.3 20140802 (Saturday, August 2nd 2014 20:46 UTC) Build 2822
Java ver 1.7.0_55
Windows 7 6.1 (x86)

Date: 8/12/14 3:11 PM
Working directory is C:\pc2-9.3.0

Tue Aug 12 15:11:46 PDT 2014 Using Profile: Default @ profiles\P3a9add10-5089-47c5-
b82a-31966b136b6b

Tue Aug 12 15:11:46 PDT 2014 server (Site 1 - Site 1) started

To halt a non-GUI server, use the Shutdown button on the Site tab on the Administrator

GUI to gracefully stop the server.

5.3 Server GUI Controls

Upon successful login to a server (assuming the server was started without the --nogui
option) a GUI similar to the following appears:

11 Note that a drawback of this approach is that the login and contest master passwords must be typed in plain-text on
the command line. A much more secure option is to take advantage of the “-F” command line argument, which allows
specification on the command line of a file containing the necessary security information. See the appendix titled “PC2
Server Command Line Arguments” for details.

PC2 Administrator’s Guide 23 http://pc2.ecs.csus.edu/

The tabs across the top of this GUI allow the user to examine and modify various
configuration items in the contest. Those items which are primarily server-related are described
below; some of the tabs also appear in the PC2 Administrator GUI and are described in the
chapter on “Interactive Contest Configuration”. 12

5.3.1 Adding Sites

The Sites pane (shown above) lists each contest site which the system knows about.
Initially only “Site 1” is known; in order for a server at another site to join the contest, the
additional site must first be added to the Sites list.

To make the system aware of the presence of another site, press the Add Site button to
create a new row in the grid.13 In the new row which appears, select the Password field and
change the password from the default value.14 Next, select the IP field in the new row and enter
the IP address for the new site (that is, the IP address of that site’s server machine); then select
the Port field in the row and enter the port number at which the new site is expected to be

12 In the case of starting a server with the “ --nogui” option the PC2 Administrator client is the only way to access
some of these screens. In addition, some server-specific capabilities can only be accessed via the server GUI.

13 The Add Site button also appears on the Sites tab in the Administration module GUI (where it can be found under the
Run Contest tab).

14 It is critically important for the security of your contest that you enter new passwords for every site (including the first
one). Otherwise, since the default values for site passwords are well-known (published for example in this manual),
some bad-guy could start his own server and connect to your contest while it is running.

PC2 Administrator’s Guide 24 http://pc2.ecs.csus.edu/

contacting the primary site.15 Optionally, select the Site Title field and assign a name to the site.
Finally, press the Update Site button to save the site info.

 Note that adding a site is a two step process: use Add Site to input the site data then
Update Site to save the site data.

When starting a server for a site, the user must supply two data values: a login name and
a password. For each site in the contest, the server’s login name is the word “site” followed
immediately (no spaces) by the site number (for example, site1 or site3). Each server’s site
number is the value given in the leftmost field in the Sites display pane. The password for
logging in to each site server is the value given in the Password field. If the password for a
remote site is changed using the Sites pane, the new password must be relayed to the remote site
in order for them to be able to log in to the contest.

 Note that there is no correlation between the value shown in the Site Title field of
the Sites pane and the data required to log a server into a contest; login names for servers are
always “siteX”, where ‘X’ is the site number shown at the left of each row in the Sites pane.
The only function of the “Site Title” field is to provide a convenient human-readable reference
for each site; that reference string is not used in any internal operations in PC2.

5.3.2 Restarting / Reconnecting Servers

During a contest there may be a loss of connectivity between sites, or a situation where
one or more servers get “out of sync” with the others. In PC2 Version 8 one had to shutdown
(kill) the server and restart it when this happened. In Version 9 there is a Reconnection feature
available to help with this situation.

To determine whether a site to which communication has been lost can be reconnected
without killing and restarting the site’s server, check the Logins pane (see below). If the server
from that site appears in a row in the Logins grid, there is a connection between the sites. In this
example on Site 1, Site 2 is logged in.

15 Care should be taken to set the port number to the port which will be specified in the pc2v9.ini file at the remote
site; the servers will not be able to communicate with each other if the port numbers do not match. Also note that when
a new “site row” is added to the grid using the Add Site button, the default port number assigned to the new site is not
the same as the default for the first site. Typically the port numbers must be changed to match (assuming all sites will
use the same port for communication).

PC2 Administrator’s Guide 25 http://pc2.ecs.csus.edu/

To reconnect a site that was previously logged in16 but is now disconnected, use the
Reconnect button. Note that the Reconnect button is on the Sites tab, not the Login tab.
When the site is reconnected, that site will appear in the list on the Login tab.

16 To reconnect a site the site must have previously been started. Reconnection will not restart a remote server.

PC2 Administrator’s Guide 26 http://pc2.ecs.csus.edu/

5.3.3 Connections and Logins

These two tabs on the server GUI show what network connections and what PC2 client
logins have occurred since the server was started. They can sometimes be used to help with
reconnection when sites get disconnected, as described above, or to trace anomalous or error
conditions in the system. They can also be used to force a disconnection or logout from the
system; this is done by highlighting (selecting) a row in the corresponding grid and pushing the
Disconnect (or Logoff) button.

5.3.4 Additional Server GUI Controls

The remaining tabs on the Server GUI (Export, Options, Reports, and Times) are
replicated on the Administrator GUI and are described in the chapter on Interactive Contest
Configuration.

5.4 Starting Clients

Once a PC2 server is running at a site, users (Contest Administrators, Judges, and Teams)
at the site can start PC2 clients to login and use the system17. The normal procedure is first to
start a client using the “pc2admin” command and login as the “root” administrator (password
“administrator1”) in order to configure the contest. Subsequently each Contest Judge would
start a client using the “pc2judge” command, and each Team would start a client using the
“pc2team” command18. The Contest Administrator would normally also start a PC2 scoreboard
using the “pc2board” command, logging in using the PC2 account “board1”.

Each time a client is started, the client will read its pc2v9.ini file to determine its site
name and the location of its server, and then contact the server. Following this initialization
sequence, the client will display a “login” window as shown below, indicating that it is ready to
accept a user (Team, Judge, Administrator, or Scoreboard) login. Depending on the logging
levels specified in the client’s pc2v9.ini file, the progress of these steps will be displayed and/or
written to a file in the client’s startup directory under logs. If any errors occur or the client fails
to produce the login screen, check the log file in the logs directory for more details. 19

17 In the case of users logging in to a server (e.g. via Xterminals under Unix) rather than where each user has their own

machine, each user must start a client on the server via their terminal window. Each client must be started in its own
separate directory, which must contain the appropriate initialization files. Under Xwindows, the DISPLAY
environment variable can be used to direct PC2 graphical output from the client back to the Xterminal.

18 With PC2 Version 9.3 and above there is a web-based team client which allows using a browser on team machines
instead of installing and running the PC2 Team Client. See the Team Clients appendix for further information.

19 See the Appendices for further descriptions of log files and their contents.

PC2 Administrator’s Guide 27 http://pc2.ecs.csus.edu/

Note: PC2 has a security rule that disallows multiple simultaneous logins for an account.

For example, if a team logs into their account, and then tries to login again (say, from a different
machine), the first login session will be terminated. This rule applies to all forms of login; for
example, if a team is logged in via the Team Client GUI and later uses the pc2submit script to
login and submit a run, the script login will cause the GUI login to be terminated. The same is
true of using the external web-based team client; logging in via a browser will terminate any
other current login for that team.

5.5 Contest Profiles

PC2 provides a facility called contest profiles. A profile is a collection of all the
information necessary to run a contest in a particular configuration (the accounts, languages,
problems, scoring settings, etc.) Profiles allow the Contest Administrator to configure a contest,
save the contest profile, and then configure a different contest. Switching between contest
configurations is then just a matter of switching profiles.

This facility is useful, for example, when it is desired to run a Practice Contest followed
immediately by a Real Contest using the same Languages and Accounts but with a different
problem set. The Contest Administrator would configure the Practice Contest, save the current
profile under the name “Practice”, then “clone” the configuration into a differently-named profile
(for example, “Real”).

Options allow selectively cloning only certain configuration data; for example, you can
suppress copying the problems, runs, and clarifications from the Practice profile into the Real
profile, while resetting the contest time in the Real profile and keeping the same Languages,
Accounts, Groups, Judgment Names, Notifications, and so forth. Switching from the Practice
Contest to the Real Contest is then simply a matter of switching between profiles.

PC2 Administrator’s Guide 28 http://pc2.ecs.csus.edu/

Profiles are created using the Profiles tab on the Configure Contest screen of the Admin
client, shown below. NOTE: Profiles are only supported in a single site contest.20

Pressing the NEW button on the Profiles screen displays the following dialog which allows
creation of a new profile. Note that new profiles are essentially empty – meaning that the user
is responsible for providing all configuration information for the profile, including some
information that PC2 normally automatically provides as part of the “Default Profile”. To avoid
having to enter all configuration information for a profile, use the “Clone Profile” operation (see
below).

20 “Single site contest” refers to having only a single PC2 Server running; it is perfectly possible to use Profiles in a
contest with teams at geographically separate locations, by having all teams connect to the same PC2 Server either using
the Team Application Client or the web-based team client.

PC2 Administrator’s Guide 29 http://pc2.ecs.csus.edu/

Pressing the CLONE button on the Profiles screen displays the following dialog which
allows creating a clone (copy) of the currently active profile. Notice that in the example below
a currently active profile named “Practice” is being cloned to produce a new profile named
“Real”; all the information which is the same between the “practice” and “real” contests (for
example, Languages, Accounts, Judgements, etc.) is being copied over to the new (clone) profile,
but the Contest Problems, Submitted Runs, and Submitted Clarification Requests from the
Practice Contest are not being copied. This provides a simple mechanism for duplicating the
configuration between practice and real contests without having to reenter all the configuration
information.

PC2 Administrator’s Guide 30 http://pc2.ecs.csus.edu/

The SWITCH button on the Profiles screen is used to switch the system between profiles.
To perform a switch, the new profile (the one to which the user wishes to switch) must first be
selected by clicking on its row in the table of profiles. Pressing the SWITCH button then pops up
a dialog as shown below, asking for the “master contest password” associated with the selected
profile (the one being switched to). Entering the password and then pressing the SWITCH button
on the dialog causes PC2 to switch its configuration to the configuration defined by the selected
profile. The contest must be stopped for the Switch operation to be allowed.

The RESET button on the Profiles screen is used to reset various configuration elements in
the currently active profile. (Note that even if another profile is “selected” by clicking on its
row in the table, RESET applies to the currently active profile; to reset a profile other than the
active profile you must first use SWITCH to activate that other profile.) The contest must be
stopped for the Reset operation to be allowed. Pressing RESET displays the following dialog:

Pressing RESET on the dialog will remove all submitted runs and clarifications from the
currently active configuration, as well as resetting the contest time. Checking the Remove

PC2 Administrator’s Guide 31 http://pc2.ecs.csus.edu/

Problem Definitions and/or the Remove Language Definitions checkboxes will cause the
corresponding configuration data to also be removed when RESET is pressed.

When a profile is “reset”, PC2 automatically makes a backup copy of the profile as it
appeared before it was reset. This allows the user to recover from unintended actions caused by
a Reset; it is always possible to switch back to a previous version of a profile by switching to its
backup. Note however that backup profiles are not by default displayed in the table of profiles.
Checking the Show Backups checkbox on the Profiles screen causes ALL profiles (including
backups created by a Reset) to be displayed.

Pressing the REPORT button will generate a PC2 Report of the known profiles (including
backup profiles). See the Appendix on PC2 Reports for additional information.

PC2 Administrator’s Guide 32 http://pc2.ecs.csus.edu/

6 Interactive Contest Configuration

Configuring a contest involves at least the following: creating user accounts for teams
and judges; defining contest languages; and defining contest problems. It can also include a
variety of additional steps such as configuring judgement messages, balloon notification
handling, site configuration (for a multi-site contest), and setting various options such as scoring
properties, output size limits, and information visible to judges.

Contest configuration can be done in two ways: interactively via various Administrator
screens, or by loading configuration data from files. The following sections describe the various
interactive configuration steps. See the separate chapter, Configuring the Contest via
Configuration Files, for information on loading configuration data from files rather than
interactive configuration.

Note: the chapter on configuration via files is somewhat terse, in that it does not describe
all of the nuances of various configuration items – only how to specify the configuration items
via configuration files. If you encounter topics in that chapter which are unclear, refer back to
the corresponding sections in this chapter for additional details.

6.1 Administrator Login

Once PC2 is set up and running, it is necessary to “log in” to the system via a client login
window in order to use the system. A PC2

 “account” is required in order to log in. Initially only
a single account exists; the account name (“login ID”) of this single account is “root”. This
account is a master Administrative account which is used to configure the PC2

 system initially
for the contest. Regular users (especially Teams) should NOT be given access to this account.

The default password for the root account is administrator1. Note that the default
master password is given right here in this paragraph of this document, which is publicly
available on the Web.

Caveat Administrator : change the root password!

Passwords can be changed via account management functions on the “Configure Contest
Accounts” tab; see below.

After logging in to the “root” Administrator account, the following screen will be
displayed. This is referred to as the “main Administrator screen”. It provides a series of “tabs”
across the top to select various contest administration functions. The tabs which are used to
configure the contest prior to starting are described in the remainder of this chapter. Tabs used
to start the contest and monitor its progress are covered in the following chapters.

PC2 Administrator’s Guide 33 http://pc2.ecs.csus.edu/

6.2 User Accounts

6.2.1 Account Creation

Before any logins other than root can occur, it is necessary to create user accounts. To
create accounts for users, click the Generate button on the Accounts tab on the Configure Tab
on the main Administrator screen. This will display the following screen:

Note that the “(1)” to the right of the “Administrators” label means that currently one
Administrator account exists – that one account is the root account – and no other accounts exist.
It is necessary to create one Team account for each team at this site, one Judge account for each

PC2 Administrator’s Guide 34 http://pc2.ecs.csus.edu/

person (or automated judge) who will be judging the contest at this site, and at least one
Scoreboard (“board”) account if the PC2 scoreboard is going to be used for tracking contest
results. (It does not hurt to generate a few extra accounts in each category, for flexibility.)

 Enter the desired number in each box, then click the Generate button. Depending on
the number of accounts, number of sites, and communication delays, it will take anywhere from
a few seconds to several minutes for the account generation to complete. Once the accounts are
generated the system will automatically return to the main Administrator screen.

 PC2 accounts always start with the word team, judge, admin, or board, followed by a
number. See the next section for information on viewing/changing the state of generated
accounts.

Accounts in PC2 are site-specific. This means that in a multi-site contest an
Administrator must create the accounts for each site. There are two steps for the Administrator
to create accounts on a site. First, start a PC2 server at each of the sites. Second, an Administrator
creates accounts by selecting the site then creating the accounts as described above.21

Note: by default PC2 only allows a single login at a time for any account; if a second
user logs into the same account using the same (valid) credentials, the first login session is
automatically terminated (this is a security feature to insure that teams are not using more than
one computer to access the PC2 system). However, starting with Version 9.7, PC2 provides the
ability for the Contest Administrator to configure the system to allow multiple logins for team
accounts. See the section on Options (Settings), below, for details on allowing multiple team
logins.

6.2.2 Account Names and Passwords

Each generated account will be created with a password, but at present the default (only
available) specification for passwords on newly-generated accounts is “Passwords same as
Account Name”. This means for example that the password for the account “team1” is “team1”;
the password for the account “judge1” is “judge1”; etc. Each account name and password is
created with all letters in lowercase.

21 Recall that, as mentioned earlier, it is actually not usually necessary to use “multi-site” mode – that is, to run more
than one PC2 server. Assuming reliable network communications are available, teams and judges at arbitrary physical
locations can normally connect to a single PC2 Server running the entire contest.

PC2 Administrator’s Guide 35 http://pc2.ecs.csus.edu/

Passwords for accounts can be changed from their default values by editing each account.
To edit an account, click on the account in the display grid to select it (“team2” has been selected
in the display shown above), and then click the “Edit” button. This will display a new “Edit
Account” window, shown below:

PC2 Administrator’s Guide 36 http://pc2.ecs.csus.edu/

The “Display Name” for an account is the name which will appear on the PC2
Scoreboard; this can be set to any desired value (such as the name of the team’s school, or the
team member’s names). The “Password” and “Verify Password” fields can be used to set any
desired password for the account.

The Permission “Shown on scoreboard displays” checkbox determines whether a team
account will be considered in computing the scoreboard standings; if there are some team
accounts which will not be used then you should uncheck their “Shown on scoreboard displays”
checkboxes – otherwise they will appear on the scoreboard as teams which have solved no
problems. Note that the “Shown on scoreboard displays” checkbox only determines whether a
team appears on the scoreboard; teams which are not shown on the scoreboard can still log in,
submit runs, and otherwise participate in the contest. This is designed to allow “guest” or other
“non-competitive” teams to participate. (To prohibit any activity from a team account, change
the account password or uncheck the “Login” Permission checkbox)

The “Group” field is used to associate accounts with different “regions” or “groups”.
This is used in conjunction with the PC2 scoreboard for displaying rankings of different
subgroups (see the chapter on the PC2 Scoreboard for further details).

PC2 Administrator’s Guide 37 http://pc2.ecs.csus.edu/

Note that PC2 accounts are unrelated to any user accounts which may otherwise exist on
the systems being used for the contest (for example, user accounts provided by the operating
system).

In a multi-site contest, newly created PC2 accounts are automatically distributed
throughout the entire system, including across multiple remote sites. As previously noted,
accounts are “site-specific”. Note also, however, that accounts at different sites are numbered
using the same sequence; the first team account at Site 1 is called “team1”, and the first team
account at Site 2 is also called “team1”, etc.. Accounts are therefore identified by always giving
both the Site number and the Team number, as in “Site1Team1”, which is a different account
from “Site2Team1”.

6.2.3 Loading Account Data

Since editing account data (e.g. Display Names, Passwords, etc.) interactively for every
account is cumbersome, it is desirable to be able to prepare the data “offline” ahead of time and
then load it into PC2. This can be done by preparing an “account data” file and using the Load
button on the Accounts tab load the data into the system.

An “account data load file” consists of a series of text lines: a single line that defines the
account data fields that will be loaded, followed by lines which contain information for each
account.

The format of the account data load file is as follows. File lines starting with ! or # in the
first column are treated as comments and are ignored. Each non-comment line has fields,
separated by a <tab> (ASCII 9).

The first line of the file must contain the names of the fields to be loaded, separated by
tabs. Subsequent lines contain field data, one line per account. The site and account fields are
required; other fields are optional. The fields may appear in any order (except that the field order
on data lines must match the order specified in the first (header) line). The recognized field
names are:

 site – site number
 account – team login name (ex. team1, judge4, scoreboard2)
 password – account password
 group – group name
 displayname – name to be displayed on scoreboard
 alias – an alias display name shown to judges to preserve team anonymity
 permdisplay – true or false, display on scoreboard
 permlogin – true or false, allowed to login

For example, to initialize accounts “team1”, “team2”, and “team3” so that the “team1”
account displays on the scoreboard with the name “Number 1” and has a password of “pass1”,
while the “team2” account displays on the scoreboard with the name “Team Number 2” and has
a password of “myPass”, and the “team3” account is made inactive (does not display on the
scoreboard), the following entries would be placed in the load accounts data file for teams:

PC2 Administrator’s Guide 38 http://pc2.ecs.csus.edu/

site<tab>account<tab>displayname<tab>password<tab>permdisplay
1<tab>team1<tab>Number 1<tab>pass1<tab>true
1<tab>team2<tab>Team Number 2<tab>myPass<tab>true
1<tab>team3<tab>My School Name<tab><tab>false

Note: for clarity in the example above the tab character is represented as <tab> ; it should
appear as a single tab character (ASCII 9) in the actual file.

Imported values overwrite any values that were in the system previously. Also, it is not
necessary to provide a record in the data file for every account; the site and account fields
determine which accounts will be modified (any unlisted accounts will remain unchanged).

 To load the account load file use the Load button on the Accounts Tab (under the Configure
tab). The load button will display a File Open dialog; select the name of the account load file
and click Ok. At this point the Review Account Loading dialog will appear, as shown below:

Any changes/differences that will be applied will have an asterisk at the end. Click on
Accept to apply the changes. By default only accounts that have changes are shown, check the
“Include unchanged accounts” checkbox to see all accounts that were loaded.

6.2.4 Importing ICPC Data

PC2 was designed for supporting the International Collegiate Programming Contest,
including its local and Regional contests worldwide. The ICPC maintains an online Contest
Registration system which is used by Regional Contest Directors (RCDs) around the world to
manage participation in the various ICPC Regional Contests.22 PC2 provides interfaces to import

22 Visit the ICPC web site at http://icpc.baylor.edu/icpc/ for further details.

PC2 Administrator’s Guide 39 http://pc2.ecs.csus.edu/

contest registration data from the ICPC Registration system, and also to export contest results
back to the ICPC web site. See the Appendix on ICPC Import/Export Interfaces for further
information on importing/exporting ICPC Registration system contest data.

6.3 Contest Problems

6.3.1 Defining a Problem

PC2 must be provided with information about the problem set to be used in the contest.
To enter this information, click on the Problems tab at the top of the main Administrator
Configure Contest screen. This will produce a display similar to the following:

PC2 Administrator’s Guide 40 http://pc2.ecs.csus.edu/

Note that initially no problems are listed since none have been added to the system. To
add a problem, click the Add button. This will produce the “Add New Problem” dialog shown
below.

To define a contest problem to the system, perform the following steps using the Add

New Problem dialog:

1) Enter the problem name in the top textbox.

2) Enter the value (in seconds) that the system should enforce as the problem run time limit.

3) Enter a “short name” for the problem (this is the unique string by which the problem is known
internally in the system).

4) If the problem requires an input data set, click the “Problem Requires Input Data” checkbox
and then

PC2 Administrator’s Guide 41 http://pc2.ecs.csus.edu/

a. select either “Stdin” or “File”, depending on whether the problem
description tells teams to write their programs to obtain input data from
“standard input” or from a file23, then

b. if the problem is to be tested using only a single data file, use the Browse button to
select the data file (see below for how to define a problem which is to be tested using
multiple judge’s input data files).

5) If the Judges have provided a single “Answer File” (a file showing the expected output of a
program correctly solving this problem), click the “Judges Have Provided an Answer File”
button and then use the Browse button to select the Answer File. (See below for how to
define a problem with multiple Judge’s Answer Files.)

6) Select the desired “Display Options” to be applied when the problem is executed and
displayed on the Judge client:

o Show the output window – shows the PC2 output window upon completion of
execution/validations

o Show Compare – shows the PC2 compare window upon completion of validation

o Hide Problem – do not show this problem to the teams (also suppresses showing this
problem on the Scoreboard HTML/output)

7) Click the Add button to save the problem description.

As each contest problem is entered, it will be displayed on the main Administrator screen
(when the Problems tab has been selected). To change some previously entered information for a
problem, click on the problem row in the main display to select it, then click the Edit button. This
will return to the Edit Problem dialog, where changes can be made.

The following additional notes apply when defining a contest problem:

 The Run Timeout Limit value (shown as 30 in the sample screen above but settable to any
positive integer number of seconds when the problem is defined) is enforced by PC2. A
count-up timer is displayed during program execution so that the Judge can tell how long
the program has been executing; when the specified timeout limit is reached the program
will be terminated and the Validator judgment will show “No - Time Limit Exceeded”.
The timer also includes a button to allow the Judge to terminate the program at any time.

 The content of the input data file for a problem is stored internally when the Add button is
pressed (that is, PC2 makes an internal copy of the file). For this reason, editing the user’s
copy of the file will not automatically change the data presented to team programs. To
modify the data file for a problem, the contest administrator must EDIT THE PROBLEM
and press the Update button. Upon pressing the Update button, a prompt will appear

23 Note that teams can be instructed to write programs which read from “stdin” even though the administrator provides

the input data in a file; PC2 arranges that the content of the specified file is available in the current directory at runtime
(for the case of reading from a file), or that the content of the file is presented to the program’s standard input channel
(if that input selection is specified).

PC2 Administrator’s Guide 42 http://pc2.ecs.csus.edu/

confirming that the file has changed on disk. Answer Yes to the prompt to re-load the data
file.

 PC2 automatically associates a “problem letter” with each defined contest problem; the first
problem entered becomes “Problem A”, the second problem entered becomes “Problem
B”, etc. Since Version 9.7 problems after the 26th defined problem (“Z”) are lettered “AA’,
then “AB”, etc. The only place where problem ‘letters’ are actually displayed is on the
PC2 scoreboard (which displays the problem letter in lieu of the full problem name).

 All team program output is expected to go to “standard output” (where it is captured by
PC2 and saved for display to the Judges). More specifically, there is no mechanism in the
current version of PC2 for dealing with programs which are written to send their output to
a destination other than “stdout” (for example, programs which send their output to a file).24

 Contest problems in PC2 are global, in the sense that once a problem definition is entered
by the Contest Administrator that problem definition is broadcast to all sites. There is no
mechanism for having teams at different sites in a multi-site contest see different
descriptions of the same problem. If there is some reason that different descriptions are
needed for the same problem (for example, if a problem needs to be described differently
at different sites due to OS differences), it is necessary to enter the different problem
descriptions effectively as different problems. (While this is not very elegant, it is also
something that we rarely – virtually never – see in real contests…) Said another way,
PC2 views a contest as a set of teams all working on an identical problem set. Note also
that contest problems appear in the same order at each site in a multi-site contest.

 Care must be taken when configuring contest problems in one machine environment (say,
Windows) and then moving the configured system to a different environment (say, Linux).
In particular, problem files (judge’s data files and judge’s answer files) should not be
configured this way. PC2 records the path to configured files; the path will most certainly
be different when the configuration is moved to a different platform.

24 There is in principle no reason a contest administrator could not use the PC2 “Validator” capability to effectively

examine and process output sent to a file by a team’s program – including displaying that output for the Judges. While
this is not the primary intent of the Validator capability, it could be used as an effective workaround for this limitation.
See the Appendix on Validators for details.

PC2 Administrator’s Guide 43 http://pc2.ecs.csus.edu/

6.3.2 Multiple Test Data Files

The previous section described how to configure a Contest Problem which is to be tested
using a single data set (or “test case”). PC2 also supports the ability to automatically execute a
single team submission against multiple different data files. In order to use this capability, the
input data files and corresponding answer files25 must be loaded using the Add Problem or Edit
Problem screen’s Test Data Files tab, shown below (shown with a set of input data and answer
files already loaded):

The “storage option” radio buttons on the Test Data Files tab are used to control the way
in which PC2 handles storage for data files. By default, data files are automatically loaded into
PC2 system memory (this is what “Copy Data Files into PC2” means). Subsequently, whenever
a human judge or PC2 “Auto-Judge” (see below) is used to judge a problem, the data files are
automatically shipped to the judge along with the submission. This works fine for most contest
problems; however, extremely large data files (e.g. larger than around 5MB) can cause system
memory overflow and/or cause heavy network traffic loads.

To help mitigate these problems, data files can be marked as being stored external to the
PC2 system (“Keep Data Files External”). In this configuration, PC2 records necessary

25 When using multiple test data files, each data file must have a corresponding “answer file”.

PC2 Administrator’s Guide 44 http://pc2.ecs.csus.edu/

information about the data files (e.g. the file names), but does not actually load the data into the
system and does not transmit the data to judges. This eliminates the memory and network traffic
issues. However, it requires the contest administrator to insure that all the data files for the
problem are copied onto all Judge’s machines.

Note that the storage option for a problem must be set prior to loading the data files for
the problem, and cannot be changed once a problem is created and saved in the system.

When using external data files it is also necessary to configure PC2 to be aware of where
the data files are located when they are stored on the judging machines (by the contest
administrator, external to PC2).26 Specifying the external data file location is done using the
“Set Judge’s Data Path” button on the main Administrator screen’s Problems tab (see the
earlier screen), which pops up a dialog for setting the path as shown below.

The Judge’s Data Path must be set whenever a contest problem is configured to use
external data files (the system will not allow to save a contest problem configured to use external
data files without setting the Judge’s Data Path). Further, when a PC2 Judge is started it will
automatically check to verify the required data files are present in the specified location on the
Judge’s machine and will refuse to perform judging if the files are not found in the specified
location.

Once the data storage option for the problem data files is selected, press the Load button
on the Test Data Files tab to load the set of test input data and answer files into the system. This
will pop up a window that allows you to navigate to the place where the data and answer files
are stored. Using the navigator, select the folder which contains the set of input data and
answer files. The result of loading a set of input data and corresponding answer files is show
in the display above.

PC2 follows the CLICS CCS standard which requires that input data files have names
ending with the extension “.in” and that answer files have names ending with the extension
“.ans”. Selecting a folder causes the system to load all data files and answer files matching
those names from the selected folder into the system. If no such files are found, or if there is a
mismatch between the number of data and answer files, the system displays an error message.

Loading a set of input data and answer files means that when a problem is judged, it will
be executed once for each input/answer file pair, and the results of each of these executions will

26 Setting the Judge’s Data Path is necessary because the data files might be stored under a different path on the Judge’s

machines from where they are located on the Administrator’s machine – which is allowable (as long as the files are
located in the same path on all the Judge’s machines).

PC2 Administrator’s Guide 45 http://pc2.ecs.csus.edu/

be displayed for the judge (see the separate PC2 Judge’s Guide for details on the display of
execution results to the judge).

During judging, PC2 executes multiple test cases by processing the input data files in
lexicographic order of file names. This means for example that a set of three input data files
with the name “test1.in”, “test2.in”, and “test10.in” would be executed in the order “test1.in”,
then “test10.in”, then “test2.in”. To avoid confusion in naming of input test data files, be sure
to specify the names in the desired lexicographic order. (For example, put leading zeroes (e.g.
“001”, “002”, “010”) in all numeric file name elements to keep “1” and “2” from being
separated by “10”.)

6.3.3 Defining Judging Type

By default each contest problem is manually judged, meaning that a person selects a
judgment for each submitted run. The system can also automatically judge runs, and when
doing so can also include an optional second step where a human judge manually reviews and
judges the run.

Configuring the system to automatically judge a problem requires several steps: (1) a
validator must be defined for that problem27; (2) the Judging Type for the problem must be set
as Computer Judging; and (3) at least one judge module must be configured to automatically
judge the problem (that is to say, there must be at least one PC2 “AutoJudge” running; see
below). Note that these steps must be performed for each problem that is to be computer judged,
although the same judge module can be used to do automated judging for more than one
problem (see the following section for information on configuring judge modules for automated
judging).

27 A validator is a program that examines the output of a team’s program and determines whether it is a correct solution
to the problem. The Validator tab on the Add Problem or Edit Problem dialog is used to specify the validator
program to be used for the problem. See the Appendix on Validators for further details.

PC2 Administrator’s Guide 46 http://pc2.ecs.csus.edu/

Specifying that a problem is to be computer judged is done via the Judging Type tab on the
Add New Problem dialog, shown below.

To specify computer judging (also called “automated judging”), perform the following steps:

1) Select Computer Judging.

2) Optionally select Manual Review if the problem is also to be judged (reviewed) by a
human judge after the automated judging process is completed.

3) Optionally select Send Preliminary Notification to team.28 The effect of selecting this
option is that a notification of the preliminary “automated judging” result will be sent to
the team. These preliminary notifications are clearly marked “Preliminary”, and the
judgment value they assign can subsequently be overridden by the human judge during
Manual Review (see the separate PC2 Judge’s Guide for more information on overriding
preliminary judgments).

If the Judging Type for a problem is Computer Judging but a validator is not defined for that
problem, the system will not allow the problem definition to be saved; instead a message “Computer
Judging selected, must select a validator” will be displayed when an attempt to save the problem is
made. Once a validator is defined then the problem definition can be saved. Again, refer to the
appendices for information on defining validators for problems.

6.3.4 Assigning Auto Judging to Judge modules

In order to accomplish computer (automated) judging, each problem which is to be auto-
judged must have at least one PC2 judge module configured to be aware that the problem should be

28 If Send Preliminary Notification to the team is not selected when Computer Judging and Manual Review are

selected, the automated computer judgment will not be shown to the team.

PC2 Administrator’s Guide 47 http://pc2.ecs.csus.edu/

automatically judged. This can be accomplished in a variety of ways: a single judge module can be
told to handle all auto-judge problems, or a separate judge module can be configured for each
different problem, or the set of problems to be auto-judged can be distributed in some partitioned
fashion across a set of PC2 judge modules. The requirement is simply that, for each problem
designated as requiring “Computer Judging” (as described above), there must be at least one PC2
judge module made aware that that particular problem requires automated judging.

Configuring judge modules for auto-judging is accomplished by specifying, for each “judge
login account”, which problems (if any) that account should perform auto-judging on. (For this
reason, auto-judging assignments cannot be made until after Judge login accounts have been
created.) To configure judge modules for auto-judging, use the Auto Judge tab on the Configure
Contest tab on the Administrator main screen, shown below.

PC2 Administrator’s Guide 48 http://pc2.ecs.csus.edu/

To specify that a particular judge account is to auto-judge one or more problems, select the
row identifying the judge account and click Edit. This will pop up the Auto Judge Settings dialog,
shown below. The dialog will show (only) problems that can be automatically judged (that is,
problems which have a validator defined and have been specified as requiring Computer Judging).

Select the problems that this judge module is to auto-judge by clicking on the corresponding
problem row checkbox, then click Enable Auto Judging followed by Update. In the example shown
below Judge 4 at Site 1 will automatically judge the problems named “Bowling for Crabs” and
“Sumit”, but will not judge the problem “The Roof is on Fire!”.

Upon clicking Update the Auto Judge tab will change to show that auto-judging is ON for
the specified problems for Judge 4 at Site 1, as shown below. From this point on, any time Judge 4
at Site 1 is logged in it will automatically fetch and judge runs for either of the two specified

PC2 Administrator’s Guide 49 http://pc2.ecs.csus.edu/

problems (but will not judge any other problems). Runs will be automatically selected in
chronological order and judged. To monitor the status of runs use the Runs tab under the Run
Contest tab.

Any number of judge modules can be set up in this way, judging any combination of
contest problems (provided that the problems have been configured with a validator and
specified as “Computer Judging” problems).

Note that some consideration should be given to the assignment of problems to judge
modules. For example, if one contest problem is known (or expected) to be likely to incur long
run-times, it might be desirable to insure that more than one judge module is configured to auto-
judge that problem. Likewise, it might be desirable to avoid assigning other problems to such
a judge, since those problems will necessarily be delayed in their judging until the long run-
time of the previously-judged problem has expired.

Note also that a judge module which is configured for auto-judging should not also be
used for human judging (review); separate accounts should be used for human logins.

When a judge account is logged in then computer judging will start automatically on any
problems for which that account has been configured for auto-judging; no additional steps are
necessary to begin auto-judging.

To stop a judge module from auto-judging, Edit the Auto Judge (Settings) and uncheck the
Enable Auto Judging Tab.

PC2 Administrator’s Guide 50 http://pc2.ecs.csus.edu/

6.4 Contest Languages

6.4.1 Defining a Language

PC2 must be provided with information about the programming languages used by
contestants (teams). To enter this information, click the Languages tab on main Administrator
screen. This will bring up a display similar to the following:

Note that the display is empty because no languages have been defined yet. To add a
language description, click the Add button. This will bring up an Add New Language dialog, similar
to the one shown below, containing fields used to describe the language to PC2.

PC2 contains built-in descriptions for a number of commonly-used language compilers.
These built-in descriptions can be selected using the “Auto Populate” drop-down list. In the
example Add New Language dialog shown below, the Auto Populate function has been used to select
the language configuration for Java. Note: the example also shows the use of something called
“command parameter substitutions” – strings such as “{:mainfile}” containing curly braces. See the
section on Command Parameter Substitution for an explanation of these strings.

PC2 Administrator’s Guide 51 http://pc2.ecs.csus.edu/

The Add New Language fields have the following meanings:

 The “Display Name” for a language is the name which Teams will see when they are asked
to specify the language in which they have written a program which they are submitting. The
Display Name can be any arbitrary text; it does not have to be a real language name (for
example, “Local C Compiler” could be a legitimate language Display Name).

 The “Compile Cmd Line” field is used to specify the command line which is used to compile
source code and produce an “executable program file” in the language.

 The “Executable Filename” field is used to tell PC2 the name (or more correctly, the form
of the name) of the output (executable program) file produced by the compilation process.
PC2 clears its internal execution directory of any instance of the specified executable file
prior to compilation, and checks for the existence of the specified executable file following
compilation. It interprets the existence of a new executable file as evidence of successful
compilation.

 The “Program Execution Command Line” field is used to specify the (form of the)
command line required to execute (run) the resulting program. Execution is only performed
if the preceding steps were successful in producing a new executable file.

 The “Judge Execution Command Line” field is used to specify the (form of the) command
line required to execute (run) the resulting program on Judge machines. It is only necessary
to specify a value in this field if the form of the execution command is different on Judge
machines than it is on Team machines. (This might be the case, for example, if the Judge
machine is intended to run the program inside a “sandbox”; on a team machine the program
would be directly executed but on a Judge machine the program executable would be passed
to the sandbox for execution under controlled conditions.) The Judge Execution Command

PC2 Administrator’s Guide 52 http://pc2.ecs.csus.edu/

Line field is ignored unless the adjacent Judge Execution Command Line checkbox is
checked. If not, the Program Execution Command Line (above) is used to run the program.
In any case, as with the Program Execution Command Line, execution using the Judge
Execution Command Line is only performed if the preceding steps were successful in
producing a new executable file.

 The “Script or Interpreted Language” checkbox should be selected (checked) if the
language does not require compilation prior to execution (for example, Python, PERL, and
Ruby are languages that do not compile first; the language source code is fed directly into an
interpreter). Checking this checkbox tells PC2 it should skip over any “compilation” step and
go straight to the “execution” phase.

The Contest Administrator must define each language to be used in the contest by filling in
the language definition fields (or populating them using the Auto Populate function). As previously
noted, the example screen above shows values called “command parameter substitutions” in the
language definition fields; see the following sections for further details on the definition fields.

Once the definitions for a language have been entered, click the Add button to store the
information and return to the main Administrator screen. The language names will be displayed
under the Languages tab on the main Administrator screen, as shown below. To add more languages,
click the Add button again to return to the Add New Language screen. To modify a previously-entered
language, click on the row containing the language description to select it and then click the Edit
button. See the Appendix on Language Definitions for further details.

Note that care must be taken when configuring languages using the “Auto Populate”
function. In particular, this function uses and records the current (platform-specific) path separators

PC2 Administrator’s Guide 53 http://pc2.ecs.csus.edu/

(e.g. “\” under Windows vs. “/” under Linux). If a language is configured this way and then the
configuration is moved to a machine of a different type, the strings which are used to invoke a
compiler will be incorrect (they will contain the wrong path separators).

6.4.2 Command Parameter Substitutions

The four language description fields in the Edit Language dialog can be “hard-coded” by
entering fixed values if desired. For example, the Display Name for a language is normally fixed
for the duration of a contest (e.g., “Java”, or “C++”, or “Pascal”).

However, entering fixed values for the Compile Command, Executable Filename, and
Program Execution Command fields can be extremely cumbersome and inflexible – the details of
these fields may need to change with each different program file submission, for example. In order
to provide more flexibility, PC2 supports the use of “parameter substitutions” in these fields.

PC2 parameter substitution fields are indicated by matching curly braces, with the first
character inside the left curly brace being a colon (‘:’). Following the colon character is exactly one
of a set of predefined PC2 parameter substitution keywords. Any number of command parameter
substitution fields may appear anywhere in a language description field. The currently defined
parameter substitution keywords and their corresponding meanings are given below.

The following section shows examples of language definitions, including the use of
command parameter substitution fields. For a complete list of keyword substitution variables support
by PC2, see the PC2 Wiki at http://pc2.ecs.csus.edu/wiki/Variable_Substitutions.

6.4.3 Language Definition Examples

The language screen example shown above shows a set of filled-in fields defining a language
named “GNU C++” and using the GNU g++ compiler.

The compile command line invokes the compiler (“g++”) and passes it an argument
specifying use of the math library (“-lm”). The compile command line also specifies the assignment

Keyword Meaning

mainfile
Replace with the full name of the submitted file, including
any extension (but excluding any ‘path’ specifier on the
front of the filename)

basename
Replace with the base component of the file name,
omitting any extension (and excluding any ‘path’ specifier
on the front of the filename)

PC2 Administrator’s Guide 54 http://pc2.ecs.csus.edu/

of a specific name to the “object” (compiled output) file (the “-o” argument, followed by the name
to be assigned to the object output file). In this case, the object output file is to have the same name
as the base name of the input source code file, with the characters “.exe” appended. (So for
example if a team submitted a file named “proga.cpp”, the object output file would be named
“proga.exe”, since that is the value to which the “{:basename}.exe” string would be
expanded when parameter substitution is applied.)

The final argument on the compile command line gives the name of the source file to be
compiled, which would be expanded from “{:mainfile}” to become “proga.cpp” if that was
the name of the submitted main program source file.

The Executable Filename field indicates that the executable file which is produced by the
compile command has the same name as the base name of the submitted program, with “.exe”
appended; this is because the compile command specifies (via the “-o” argument) that this is the
executable file name which should be produced.

The Program Execution command field specifies that the command used to execute the
compiled program on a Team machine is simply the same as the name of the executable file produced
by the compilation step (and specified in the Executable Filename field), which in this case is again
the base name of the original source code file, with “.exe” appended.

The Judges Execution command field specifies that the command used to execute the
compiled program on a Judge machine is the command “sandbox”, which is passed a single
argument: the name of the executable file produced by the compilation step (and specified in the
Executable Filename field), which in this case is again the base name of the original source code
file, with “.exe” appended.

If a team were to submit to the judges a C++ program in a file named proga.cpp using
the above language, PC2 would first execute:

g++ –lm –o proga.exe proga.cpp

to compile the program (substituting proga for the {:basename} parameter and proga.cpp
for the {:mainfile} parameter). It would then check for the existence of an executable file
named proga.exe, and if that file exists then PC2 would request the underlying operating system
to execute the command:

sandbox proga.exe

Note: in a Unix-like environment, the “.exe” appended to the output (executable) file name
in the above example is not strictly necessary. However, in a Windows environment, executable
files must in most cases have the extension “.exe”. Explicitly adding the “.exe” to the language
definition allows the same language definition to work in both environments.

PC2 Administrator’s Guide 55 http://pc2.ecs.csus.edu/

The following screen shows a second language definition example: a definition for a
language with the display name “Java”:

 If a team were to submit to the judges a Java program in a file named sumit.java using
this language definition, PC2 would execute the following command to compile the program:

javac sumit.java

 PC2 would then check for the existence of an executable file named sumit.class and if
that file exists then PC2 would execute the following command to run the program:

java sumit

Note that the form of the language definition fields differs somewhat between the first
example (C++) and the second example (Java). This is because of the different ways in which these
two languages define the compilation and execution process. Notice also, however, that while the
language paradigms are different, the use of command parameter substitutions allows the Contest
Administrator easily to provide descriptions of how to handle the differences. The appendices
contain further samples of language definitions for specific compilers.

6.4.4 Language Definitions In Multi-Site Contests

Language definitions in PC2 are global. This means that, just as with Contest Problem
definitions, when a language definition is entered at one site in a multi-site contest, that language
definition will be visible at all connected contest sites. However, unlike the situation with Contest

PC2 Administrator’s Guide 56 http://pc2.ecs.csus.edu/

Problems (where the problem definitions are usually identical across sites), language definitions may
differ between sites – even for the “same language”.

For example, it may be the case that every site allows the use of the “C” language. However,
it may also be true that the specific command sequence to invoke the C compiler may differ between
sites: a different C compiler might be used at different sites, or even if the same compiler is used it
may be necessary to allow for differences in the “path” needed to access the compiler or for other
environmental differences.

One way to deal with differences in language details between sites is to create a different
PC2 language description for each different language/site combination. This can quickly become
cumbersome, however; for example, if there are four languages (e.g. C, Java, Pascal, and Perl) and
five sites using those languages, it could require entry of up to 20 different language descriptions
(Site1C, Site2C… Site1Java, Site2Java,… etc.). This can become particularly unwieldy for Teams,
who must search through a list of 20 different languages looking for not just the correct language
but the correct language for their site.

To avoid this combinatorial explosion of language definitions, a simple technique can be
used when defining languages in a multi-site contest: use of generic language scripts, tailored at
each site for the site-specific configuration.

For example, consider a contest using, say, C, Java, and Pascal. The Contest Administrator
should define those three languages in PC2 using the actual language names (“C”, “Java”, and
“Pascal”) as the PC2 “language Display Names”. However, rather than defining a specific
compilation command for each language (which may differ between sites), each language should
have as its compilation command a command which invokes a language-specific (but site-
independent) script (or “batch file”) designed to compile a program in that language.

In other words, for the above three languages, PC2 language definitions would be created to
define the “compilation command” for the language named “C” to be the invocation of a script
(batch file) named “compileC” (or “compileC.bat”); the compilation command for Java would be
the invocation of a script named “compileJava”; and the compilation command for Pascal would
be the invocation of a script named “compilePascal”.

 Then, at each site, the Site Director is responsible for placing on machines at that site a set
of scripts or batch files of the corresponding names (e.g. compileC, compileJava, and
compilePascal). Within each script at each site is a set of site-specific commands which perform
the necessary steps (compile a C program, compile a Java program, or compile a Pascal program) in
the appropriate site-specific manner.

Note that if necessary, the same technique of “generic scripts” which vary between sites can
also be used in specifying the details of “Program Execution Command Line” for languages. That
is, the Contest Administrator can specify “executeC”, “executeJava”, and “executePacal” scripts
for the program execution language definitions in PC2 and then arrange for appropriately different
script contents at each site.

Note also that PC2 “command parameter substitutions” may be used in compilation and
execution command lines independently of whether the command is invoking a script or not; in this

PC2 Administrator’s Guide 57 http://pc2.ecs.csus.edu/

way the Contest Administrator can arrange to pass necessary data (such as the main program file
name and/or the base name) to a script.

Using generic script names in PC2 language definitions and providing site-specific
implementations of each language script at each site allows the Contest Administrator to
significantly reduce the number of language definitions which teams must deal with, while at the
same time retaining the flexibility necessary for dealing with site differences in a multi-site contest.

6.5 Contest Judgments

6.5.1 Defining a New Judgment

PC2 uses the term “judgments” to refer to the possible responses which a judge (human or

automated) can apply to a run submitted by a team. The Judgments Tab under the Configure Contest
tab on the Administrator main screen shows all the judgments available. The set of judgment
messages can be viewed, added, edited and deleted.

The following screen shows the set of judgments which are defined by default.

 To add a judgment click the Add button. This will bring up an Add New Judgement dialog,
similar to the one shown below.

PC2 Administrator’s Guide 58 http://pc2.ecs.csus.edu/

The “Judgement” field defines the name which Judges will see when they are asked to judge
a run. This name is also seen by the Teams when they receive that judgment.

The “Acronym” field defines the abbreviation used in the event feed and some reports.

The “Hide Judgment” checkbox will remove (hide) this judgment from the list of judgments
that the Judges can use.

6.5.2 Changing Existing Judgments

As shown above, the set of default judgments in PC2 is given by the following list:

Yes
No - Compilation Error
No - Run-time Error
No - Time-limit Exceeded
No - Wrong Answer
No - Excessive Output
No - Output Format Error
No - Other - Contact Staff

The contest administrator can use the Edit button on the Judgments tab to change the text of
existing judgments. Selecting a judgment message from the list and then clicking the Edit button
will bring up an Edit Judgment dialog, similar to the Add New Judgment dialog, allowing changes
to be made to the judgment text.

However, one guideline must be followed: PC2 assumes that the first judgment in the list is
always the “Yes” judgment – that is, the first judgment is the one which the system returns for
problems judged to be correct. The text of the default first judgment message can be changed if
desired (for example, the contest administrator may prefer the message “Accepted” instead of
“Yes”), but regardless of the actual text in the first judgment field it is that text which will be returned
for correct runs. Therefore it would be a bad idea to change the text of the first judgment message
to some form of “No” or “Incorrect Run” message.

PC2 Administrator’s Guide 59 http://pc2.ecs.csus.edu/

6.6 Balloon Notifications

In many contests (including the ICPC World Finals), balloons are used to indicate to
contestants and spectators alike the general state of the contest. Each time a team solves a problem,
a balloon of a specific color is sent to the team and attached on or near their machine. As the contest
progresses, the contest floor gradually fills up with a multi-colored display showing how various
teams are doing in the contest. (This is a colorful and normally well-received operation; if you have
never tried it, we recommend doing so.)

Using balloon notifications in a contest does present some additional management overhead
(keeping track of which team should get what color balloon, etc.). Since PC2 was designed to
support the ICPC World Finals (as well as its Regional and Local contests), it contains some built-
in support for “balloon operations”. 29 In particular, the system supports the creation of a separate
“Balloon Notification configuration” for each site in the contest. Selecting the Notifications tab on
the main Administrator screen will produce a display similar to the one below listing the currently-
defined Balloon Notification configurations.

The sample screen below shows one Balloon Notification configuration already created (for
Site 1); by default there are no such configurations and screen will be empty. Clicking the Add
button will cause an Add Notification Settings dialog similar to the one shown in the next section
to appear; that dialog is used to configure the handling of balloons for a given site. Selecting an
existing row in the table and then clicking the Edit button will allow editing of the selected
configuration. Selecting an existing row and then clicking the Copy button will create a copy of the
selected settings and allow selection of a different site which should use those same settings (in a
multi-site contest using the same settings this avoids having to reenter the settings).

29 Note that while PC2 has its own Balloon handling mechanism, it is also compatible with the “ICPC Balloon Utility”

– the tool used at the ICPC World Finals as well as in a variety of Local and Regional contests around the world.
The ICPC Balloon Utility is somewhat less complicated and more robust; we actually use that rather than the built-
in PC2 Balloon Notification system in most of our own contests. More information can be found at
https://tools.icpc.global/.

PC2 Administrator’s Guide 60 http://pc2.ecs.csus.edu/

6.6.1 Defining Balloon Notifications

Balloon Notification options include ability to specify the color of balloon associated with
each problem; sending messages to a printer each time a balloon should be delivered to a team; and
sending an email message via a specified email (SMTP) server to an arbitrary email account each
time a balloon should be delivered to a team. Printed and emailed messages contain the relevant
details such as Team, problem, and balloon color. Each of these options is specified on a per-site
basis (so that, for example, sites can use different color balloons for a given problem).

To enable the use of email balloon notifications for the specified site, check the “Send Email
Notifications” box, then enter in the appropriate text boxes the full name of an SMTP email server
accessible to the PC2 Scoreboard machine along with a valid email address (EMail contact).

To enable the use of printed balloon notifications for the specified site, check the “Print
Notifications” box, then enter in the Print Device textbox the device identifier of a printer accessible
to the PC2 Scoreboard machine.

Generation of balloon notifications is handled by the PC2 Scoreboard machine.30 Once email
and/or printing notification is enabled, every “YES” judgment detected by the PC2 Scoreboard
account selected in the “Balloon Client” drop-down list will cause an email notification and/or a
printed notification to be sent to the configured location.

30 More specifically, it is handled by a PC2 Scoreboard machine logged in under the PC2 account selected as the “Balloon

Client” on the Add Notifications Settings screen, as shown above.

PC2 Administrator’s Guide 61 http://pc2.ecs.csus.edu/

6.6.2 Email Server Advanced Settings

If there are non-standard SMTP or additional SMTP settings required the EMail Server
Advanced Settings button can be used to specify the settings. This button pops up the following
dialog:

The “Value” fields in this dialog are used to configure PC2 properties related to advanced
SMTP operations, including SMTP Authentication. (SMTP Authentication may require some
additional external setup to support smtps (SSL)). If there are questions about how to use Advanced
SMTP properties, including SMTP Authentication, please send email to the PC2 team
(pc2@ecs.csus.edu).

PC2 Administrator’s Guide 62 http://pc2.ecs.csus.edu/

6.7 Options (Settings tab)

The Settings tab on the main Administrator Configure Contest tab displays a screen similar
to the following. The Settings tab contains sections which allow selection of various options which
can be used manage various aspects of a contest. The meanings of the different configuration fields
on the Settings tab are given below.

Contest Settings section:

 Contest Title – specifies the contest title which is to be displayed on the scoreboard.

 Scheduled Start Time – shows the date and time at which the contest will (automatically)
start (that is, the date/time at which PC2 will begin accepting team submissions). The Edit

PC2 Administrator’s Guide 63 http://pc2.ecs.csus.edu/

Start Schedule button on the Admin’s Configure Contest > Times tab is used to enter a
scheduled start time. If no scheduled start time has been set (which is the default) then this
field displays “<undefined>” and the contest will not start until the Start or Start All button
on the Configure Contest > Times tab is pushed.

 Scoreboard Freeze Length – the point in time (in HH:MM:SS format) prior to the end of the
contest when the public scoreboard will automatically become “frozen”. The public
scoreboard remains frozen (meaning any new submissions are shown as “Pending”) starting
at this point, and remains frozen until the contest ends and is “finalized”. See the chapter on
Scoreboards for additional information about scoreboard freezing.

 Unfreeze Scoreboard – pressing this button will “unfreeze” the public scoreboard; that is, it
will allow the public scoreboard to display final contest standings (instead of showing
“Pending” submissions) once the contest is over and finalized. Note that unfreezing does
not take effect until the contest ends and has been “finalized”, regardless of when the button
is pressed.

The normal usage of this button is that the public scoreboard remains frozen (hiding the final
results from the public) until the contest ends, at which time the Contest Administrator
certifies the final results using the Admin Run Contest > Finalize tab and then “unfreezes”
the public scoreboard using this button. Unfreezing the public scoreboard cannot be undone;
be sure you want to publish the final standings before pressing this button! See the chapter
on Finishing the Contest for further information about “Finalizing”.

Judge Settings section:

 Team Information Displayed to Judges – specifies whether or not to reveal the identity of
Teams to the (human) Judges while a run is being judged. For example, assume that team
5 has a display name of “CSUS Hornets” and an alias31 of “Team Orange”. Then choosing
the various display options will have the following effect on the information shown to the
judges:

 None – show “***” for team name

 Show Numbers only – show “team#” for team name; for example, “team5”

 Show Names only – show display name only; for example “CSUS Hornets”

 Show Number and Name – for example “5 CSUS Hornets”

 Show Alias– show an alias for the team name; for example, “Team Orange”

The purpose of this setting is to allow the Contest Administrator to control the amount of
information which judges are allowed to know about the team whose submissions they are
judging.

 Judges’ Default Answer – specifies the clarification answer sent to teams if a judge selects
the Default Answer button while answering a clarification.

31 To load/specify team aliases see the section Loading Account Data

PC2 Administrator’s Guide 64 http://pc2.ecs.csus.edu/

 Judging Options – allows the Contest Administrator to control how PC2 manages certain
scoring information; for example, whether to include “Preliminary (Computer) Judgements”
in scoring, whether to send notifications for Preliminary Judgements, etc.

 Edit Scoring Properties – this button pops up a dialog which is used to specify the scoring
point penalties. See the section Configuring Scoring Properties in the chapter on the PC2
Scoreboard for additional details.

Team Settings section:

 Maximum Output Size - Specifies the maximum amount of output, in Kbytes, which a team
program is allowed produce to stdout or stderr. Any output beyond this amount is discarded
by the system and a message is added to the end of the output. The default value is 512 K
(1/2 MB).

 Allow multiple logins per team – by default, a second login to any account will automatically
disconnect the previous login session. If the Contest Administrator checks this box, PC2 will
allow multiple simultaneous logins to team accounts (but not to other types of accounts).

Remote CCS Settings section:

This section is used to manage special operations supported by PC2. See the Appendix on
Shadow Mode for details.

PC2 Administrator’s Guide 65 http://pc2.ecs.csus.edu/

6.8 Sites

This tab on the Administrator main screen displays a list of all the sites in the contest; this
list should be checked to verify that PC2 knows about all sites. If the site is currently active
(connected to the rest of the contest) the IP address for that site’s server is displayed. Note that the
Sites tab is on the Run Contest tab of the Administrator main screen, not the Configure Contest
tab.

PC2 Administrator’s Guide 66 http://pc2.ecs.csus.edu/

7 Configuring the Contest via Configuration Files

As an alternative to configuring a contest using the interactive steps outlined in the previous
chapter, PC2 also supports configuring a contest by loading a set of configuration files. The ability
to load contest configuration files is based on the structure defined by the CLICS Contest Data
Package (CDP) specification.32

The CLICS CDP specification defines a hierarchical directory (folder) structure that includes
a sub-directory named “config” which holds contest configuration information. The config folder
contains three files containing configuration information: contest.yaml, describing general contest
information; problemset.yaml, containing general information about the contest problem set; and
system.yaml, describing contest environment information such as the programming languages
supported in the contest. Each of these files contains configuration information written in YAML
(Yet Another Markup Language).33 The details of the YAML configuration elements for each of
the three configuration files can be found on the PC2 Wiki at
https://pc2.ecs.csus.edu/wiki/Configuring_A_Contest.34

The config folder also contains one sub-folder for each contest problem defined in the
problemset.yaml file. Each sub-folder holds configuration information for one specific contest
problem, in a format defined by the CLICS Problem Format specification.35

Configuration files can be loaded into PC2 in two different ways: by specifying “--load”
on the server startup command line, or by using interactive controls on the Import Config tab of the
Admin Configure Contest screen. These are described in the following sections (there are slight
differences in the results of each method).

7.1 Loading Configuration Files via the PC2 Server

When loading configuration files using the “--load” option on the server startup command
line, the “--load” must be followed by a full path ending in either a file name or a directory
(folder) name. If a path to a directory is specified, PC2 expects that directory to be either the root of
a CDP or else the config folder beneath a CDP root. In either case it reads the contest configuration
(including contest.yaml, problemset.yaml, system.yaml, and each of the Problem Format sub-
folders) from the specified CDP config folder.

If the argument following “--load” is not a directory, PC2 expects it to be the full name
(including the path) to a file named “contest.yaml”, and expects that contest.yaml file to be located
in the config file of a CDP. In this case it reads the contest configuration out of the specified config
folder as above.

32 The CLICS CDP specification can be found at https://clics.ecs.baylor.edu/index.php/CDP, and is also discussed on

the PC2 Wiki at https://pc2.ecs.csus.edu/wiki/Contest_Data_Package.
33 Or, “YAML Ain’t Markup Language”, depending on your source and timeframe…
34 Additional information on the YAML configuration file format can also be found at

https://clics.ecs.baylor.edu/index.php/Contest_Control_System#Appendix:_File_formats.
35 See https://clics.ecs.baylor.edu/index.php/Problem_format for details on the Problem Format structure.

PC2 Administrator’s Guide 67 http://pc2.ecs.csus.edu/

Loading a contest configuration using –-load is a one-time operation. That is, if a server
is restarted with a –-load option after a configuration has already been loaded it will display an
warning message like “Warning: contest configuration already exists; ignoring --load option” and will
ignore the attempt to re-load a configuration (this is done to avoid overwriting a configuration once
it has been loaded, because the configuration might have been changed by the Admin after it was
loaded). To avoid this (that is, to load a changed configuration), see the following section.

7.2 Loading Configuration Files via the PC2 Admin

Configuration files can be loaded interactively (as opposed to using “--load” on Server
startup) by pressing the Import contest.yaml button on the Import Config tab of the Admin Configure
Contest screen. Pressing Import contest.yaml displays a “file navigation” dialog allowing the user
to select a contest.yaml file. The selected file is assumed to reside the config folder beneath a CDP
root; PC2 then loads the configuration as described above for the server “–-load” option.

 One difference in loading a contest configuration via the Import contest.yaml button (as
opposed to using “--load” on Server startup) is that the newly-loaded configuration will be
merged with the existing contest configuration. That is, if there are conflicts between the existing
configuration and the configuration found in the CDP selected via the Import contest.yaml button,
the system will display the differences and ask the user to confirm which configuration values to
use.

7.3 Additional Configuration File Capabilities

With a few exceptions, PC2 supports all of the YAML contest configuration items defined
by the contest.yaml, system.yaml, and problemset.yaml subsections of the Input Files section
specified at https://clics.ecs.baylor.edu/index.php/Contest_Control_System#Input_files. (The
exceptions include that YAML import specifications for Default Clarification and Clarification
Categories will be ignored in the current system (we’re working on it…)).36

PC2 also supports a variety of additional YAML configuration capabilities beyond those
required by the CLICS specification (the CLICS specification lists minimum requirements but does
not prohibit compatible extensions). The additional supported configuration items are listed on the
PC2 Wiki at https://pc2.ecs.csus.edu/wiki/CCS_Enhancements.

Further, PC2 supports the ability to import a list of passwords which can then be used by the
internal account generation process of the system; this is done via the Import Passwords button on
the Import Config tab. The format of the password file is described at
http://pc2.ecs.csus.edu/wiki/Passwords.txt. Clicking Import Passwords prompts for the name of a
password file, then reads the file and assigns the specified passwords to team accounts in the listed
order (the first password is assigned to Team1; the second to Team2; etc.).

36 The PC2Wiki page at https://pc2.ecs.csus.edu/wiki/CCS_Enhancements describes the currently-supported YAML
configuration values in more detail.

PC2 Administrator’s Guide 68 http://pc2.ecs.csus.edu/

Imported passwords must appear one per line in the file. If there are more passwords in the
file than the number of team accounts, new accounts are automatically created and assigned the
additional passwords. Only TEAM passwords can be assigned this way; passwords for Judge and
other account types must be set using the interactive methods described earlier. Also, loading a
password file only assigns passwords to team accounts at the current site; in a multi-site contest a
separate Import Passwords operation must be done at each site.

The settings described in the Defining Judging Type section can be defined in the
problem.yaml file for each problem. Examples and more information about the settings can be
found at the wiki article https://pc2.ecs.csus.edu/wiki/CCS_Enhancements#Judging_Types

The current contest configuration can be exported (saved) to YAML files using the Export
Contest YAML Files option on the Reports tab of the Admin Configure Contest screen. Note that it
is the current contest configuration which gets written to YAML files when Export Contest YAML
Files is invoked; any changes that have been made since loading a YAML configuration will be
reflected in the output YAML report (file).

PC2 Administrator’s Guide 69 http://pc2.ecs.csus.edu/

8 Starting the Contest

8.1 Clock Control

Once the contest has been has been fully configured in PC2, the contest clock must be
“started” before teams can submit runs (the Team client will not allow run submissions if the contest
clock has not been started – although it WILL allow teams to log in). As of Version 9.4, PC2 supports
two different methods of starting the contest clock: manual and automatic. (Prior to version 9.4 the
only method available for starting the contest clock was manually.)

8.1.1 Starting the Contest Manually

The Times tab on the Configure Contest tab on the Administrator screen is used to control
the contest clock display and to start and stop the contest clock manually. Clicking the Times tab
produces a screen similar to the one shown below:

The Start button is used to tell PC2
 to start the contest clock for a site manually (i.e., now).

Selecting a site (by clicking on a row in the table) and then pressing Start starts the contest clock
running for that site and allows teams at that site to submit runs. Pressing the Start ALL button
starts the contest clock at all sites.37 (See the following section on Multi-Site Clock Control for
further information about the Start ALL button.)

37 If the contest clock for some site has already been started when Start ALL is pressed, this command causes no change

at that site but causes no harm otherwise – it starts the clock at all the other sites.

PC2 Administrator’s Guide 70 http://pc2.ecs.csus.edu/

The amount of time remaining in the contest at the current site is displayed in the top left
part of the window just below the window title; the example above shows 5 hours left in the contest.
The remaining time automatically starts counting down as soon as the Start (or Start ALL) button is
pressed. It continues to automatically update (count down) as long as the contest clock is running.38

 The remaining and elapsed time in the grid will not update automatically; to update those
times use the Refresh button

It is important to note that, from the point of view of PC2, the contest does not start until the
Start button is pressed (or the contest clock starts automatically; see below). For this reason it is
important that the Contest Administrator remember to press the Start button at the actual
time the contest starts (or to schedule an automatic start, as described below). Failure to do this
can produce erroneous scoring results.

Typically, for example, a contest is deemed to have “started” when the contest problems are
distributed to the teams. If the PC2 Start button is not pressed for another, say, 15 minutes, then that
15 minutes will not be considered to have been part of the contest by PC2. If a team were to submit
a run 20 minutes after the contest started (i.e. 20 minutes after the problems were handed out), the
timestamp on that run would show a contest elapsed time of 5 minutes, not the correct value of 20
minutes. This would produce erroneous values on the scoreboard.

The Stop button is used to tell PC2
 to stop the contest clock for a selected site. The Stop

button can be used to insert a pause in a contest (for example, to allow a break for lunch). During
the time the contest is stopped, the contest clock at the site does not count down, and teams are
prohibited from submitting runs. Also, when the contest is stopped the contest clock displays in
RED (as seen above). When the Start (or Start ALL) button is pushed again, the contest clock picks
up where it left off.

Note that this means that if a team submits a run one minute before the contest clock is
stopped, and then the clock is stopped for 30 minutes of real time, and then the team submits another
run immediately after the contest clock is restarted, the timestamps on the runs will be one minute
apart. In other words, PC2 does not consider time during which the contest clock is stopped to be
part of the contest. (If this is undesirable – that is, if the Contest Administrator wishes all time which
elapses to be counted, then simply do not press the “stop” button once the contest has been started.)

8.1.2 Starting the Contest Automatically

As of Version 9.4, the PC2 contest clock can be scheduled to start automatically at any
arbitrary future time. Setting a Scheduled Start Time is done by pressing the Edit Start Schedule
button on the Times screen (above), which produces a dialog similar to the following:

38 The remaining time is also displayed on the Team and Judge client screens, and counts down automatically; however,

it is displayed only to a resolution of one minute on those screens. When the Team or Judge window is minimized
the remaining time countdown is displayed in the window icon.

PC2 Administrator’s Guide 71 http://pc2.ecs.csus.edu/

Pressing Set to Undefined clears any currently-scheduled automatic start time. Pressing Set
to Now puts the current time into the Scheduled Start Time text box (shown as containing
“<undefined>” in the above display). Note however that a Scheduled Start Time must be in the
future, so merely pressing Set to Now then pressing Update will generate an error message and
request a valid (future) time.

The Scheduled Start Time displayed in the text box can be changed by selecting a value in
the Change Minutes: dropdown list and then pressing Increment (to move the time farther into the
future) or Decrement (to move the time back – but again, the dialog will not accept a time that is not
at least one minute in the future).

Once a desired valid (future) Scheduled Start Time has been selected, pressing Update will
cause PC2 to set up a task to automatically start the contest at the specified time; it will not be
necessary to push the Start/Start ALL button to start the contest (although doing so will work; doing
so will override any scheduled future start time and start the contest when the Start/Start ALL button
is pushed).

When a Scheduled Start Time has been set it will be displayed in the Times screen shown
previously, and the contest will automatically start (that is, the clock will start counting down and
teams will be allowed to submit runs) when the specified time has arrived. Note that a Scheduled
Start Time is interpreted to be contest wide and an automatic start starts the clock at all sites in a
multi-site contest; there is no facility supporting “automatic start” for different sites at different times
(manual starting must be used to do this).

Note: automatic contest starting is also supported in PC2 Version 9.4 and above via the
“/starttime” web service. See the Appendix on Web Services for further details.

8.2 Contest Length

The Edit button on the Times tab displays the Edit Contest Time dialog (shown below) which
allows the Administrator to change the contest length, elapsed time, or remaining time.

PC2 Administrator’s Guide 72 http://pc2.ecs.csus.edu/

The time values in the Edit Contest Time dialog do not update automatically when the contest
is running; they display only the instantaneous time values at the moment the dialog is activated. If
the contest is already stopped when the dialog is activated, those times remain accurate indefinitely.

If a new Contest Length which is less than the current Elapsed Time is entered, the system
displays a warning message to inform you that setting the contest length to a value less than the
elapsed time will effectively mean the contest is over.

The “Stop contest automatically” checkbox will automatically stop the contest clock when
the remaining time reaches 0:00. Unlike the other contest time settings which are a local site setting,
this setting applies to every connected site. If the checkbox is not checked then teams can still
submit runs. Any runs that are submitted after the end of contest (where the elapsed time is greater
than contest length) will be marked as DEL (deleted) and those runs will not be shown on the
scoreboard or event feeds. If the contest clock is running after the end of the contest the contest
time is preceded by a +. For example if the contest is running for 25 seconds after the end of the
contest the contest time would display as +0:00:25.

8.3 Multi-Site Clock Control

As described above, the contest clock in PC2 operates on a per-site basis. That is, each site
in a multi-site contest has its own contest clock, and PC2 keeps track of “contest time” independently
at each site. This is done to allow support for independent time-management constraints at different
sites, and allows scoring to be done accurately without worrying about differences in timing between
sites (e.g., a necessary pause at one site which does not affect other sites).

Normally, the Start All and Stop All buttons should be used to start/stop the contest clock at
the same moment in time at all sites. The ability to start each site separately is a convenience
mechanism intended to support situations where one site is “ready to go” and the Contest Director
does not wish to delay that site while waiting for other sites to become ready. Having separate

PC2 Administrator’s Guide 73 http://pc2.ecs.csus.edu/

contest clocks for each site allows each site to operate quasi-independently while insuring that
contest results are calculated correctly (meaning that teams get credit for submitting runs based on
the contest time at their site, and the PC2 Scoreboard takes differences in site clocks into account
when computing standings). However, operating the clocks separately at each site has its risks, as
described below.

Each PC2 site server determines the time of submission of a run from a team in terms of
“contest elapsed time”, which means that a submission will be marked (“time-stamped”) according
to the contest elapsed time at that site. The scoreboard in turn computes rankings based on this
“submission time”, which means that overall (multi-site) rankings will be determined according to
“contest elapsed time” at the site from which each run originated. This method puts teams at all
sites on an equal competitive footing regardless of differences in the time at which the contest
actually starts at each site.

However, this mechanism (keeping track of contest time independently at each site) can
produce erroneous scoring results if the Contest Administrator does not take care to control the
multi-site contest clocks correctly. Specifically, in a multi-site contest it is important that the clock
at each site be started at the moment the contest starts at that site.

Typically, for example, a contest is deemed to have started at a site at the moment the contest
problems are distributed to teams at that site. If this event (problem distribution; contest start)
happens at different real times at different sites, then a Contest Administrator at each site should
press the Start button at that site precisely when the contest starts at that site – regardless of whether
the contest has started simultaneously at other sites. In this way, runs submitted by teams at each
site will be correctly time-stamped with the true “contest elapsed time” as their “submission time”.

If all sites in the contest are fully connected, and the contest problems are handed out at the
same instant at all sites, then a single Contest Administrator can easily coordinate the start of “contest
time” at all sites correctly, simply by using the “Start All” button on the Times tab. This button
performs the same function as Start except that it applies the corresponding action (starting the
contest clock running) simultaneously to all connected sites. (Use the Admin Sites tab to determine
which sites are connected; connected sites are those that have valid IP addresses displayed in the
Sites screen).39

In a fully-connected multi-site contest where Contest Administrators at each site have agreed
(e.g. by telephone or other method) on the precise instant at which all teams at all sites will receive
the contest problems and thus the time at which the contest officially starts, having a single Contest
Administrator press the Start All button is the preferred (safest) way to coordinate the start of a
contest. Likewise, if all sites are tightly coordinated the Stop All buttons can be used to stop the
contest clock simultaneously at all connected sites.

However, if there are some sites which do not have network connectivity, or some sites at
which the distribution of the contest problems (and hence the start of the contest) is delayed for some
reason, it is critical that a Contest Administrator at that site makes certain that the contest clock is

39 If a new site server is started after the Start All Sites button is pressed, it will be necessary to use an Admin client to

start the contest time for that site. Alternatively, you could use Start All Sites to start all sites including the new site.

PC2 Administrator’s Guide 74 http://pc2.ecs.csus.edu/

started at that site at the moment the problems are handed out (or whatever other criteria determine
the moment in time when the contest starts at that site).

We have seen more than one instance of a situation in a multi-site contest where the contest
problems were handed out at all sites (hence, the contest is effectively under way at all sites), but
one or more sites failed to notify PC2 that the contest had started (either because the sites were not
networked, or because the Start All Sites button was not used). In this case, if say 30 minutes elapsed
before PC2 is notified to start its contest clock at one site, then teams at that site will effectively get
30 “free” minutes – a run submitted 31 minutes after the problems were handed out will appear to
PC2 at that site to have been submitted “1 minute into the contest”.

Caveat Administrator:

It is critical that the PC2 “contest clock” be started, at every site, at the time
the contest starts at that site.

In addition, recall that as noted previously the Stop contest automatically checkbox is a
contest wide setting. If a site is connected when the checkbox is checked then that site will stop the
contest clock whether the site is connected or not, each countdown to stop the contest clock starts a
local Thread.

8.4 Practice Sessions: Resetting A Contest

NOTE: with PC2 Version 9.3 and above, much of what is described in this section can be
done much more cleanly using Profiles; see the section on Contest Profiles for additional
information.

In many contests, the overall contest activity starts with a “practice session” prior to the start
of the actual contest. The primary objective of the practice session is to ensure that all teams are
familiar with the operation of the contest environment (PC2 in the present case) prior to the start of
the real contest. The practice session might provide teams with a trivial “practice problem” to solve
(“print your team name” or “read a file containing integers and print the sum of the integers”, for
example), and then require all teams to login to PC2 and test out the run submission mechanism by
writing and submitting a solution to the practice problem. Some contests also require teams to
practice using the PC2 “clarification system” during the practice contest. A practice session also has
the advantage of giving the Judges practice with how PC2 works prior to the start of the real contest.

In order to run such a “practice contest” prior to the start of the real contest, it is necessary
to configure PC2 for the practice contest. Most of the configuration is identical to what is required
for setting up the real contest – creating and configuring accounts, defining languages, etc. The only
real difference is typically with the specification of the problem set: the practice problem(s) must be
configured into the system for the practice contest (it is undesirable to configure the real problems
ahead of time, as this would mean the problem names would be visible to the teams during the
practice). However, most configuration items other than the problem set are usually exactly the
same during a practice contest as they are during the subsequent real contest.

PC2 Administrator’s Guide 75 http://pc2.ecs.csus.edu/

At the end of such practice contest, it is necessary to “reset” the state of the system by
removing from the database all runs, clarification requests, judgments, etc. which were submitted
during the practice contest. However, it is at the same time desirable to avoid removing from the
system the “configuration information” such as account names, passwords, language definitions, etc.
In addition, it is necessary to switch from the practice problem set to the real contest problem set.

 There is a relatively simple way to accomplish a switch between a practice and a real contest
while preserving the necessary information. First, create two directories named (for example)
practice and real. Change to the practice directory, start a PC2 Server in that directory,
and then start an Admin and configure a contest including the team accounts, languages, etc., but
omitting the problem definitions. Next, shut down the server then (recursively) copy the practice
directory contents to the real directory. This creates two directories with identical contest
configurations, including accounts, languages, etc., but with no contest problems.

Next, restart a server in the real directory and then run an Admin and add the real contest
problems to that configuration. Finally, shut down the server, change to the practice directory,
and restart a server and an Admin in that directory and use the Admin to add the practice contest
problem definitions to the practice contest configuration. This way, the real and practice
contests both have the same accounts, languages, etc., but have different problem sets. To switch to
the real contest, shut down the practice contest server, switch to the real directory, and start a new
server in that directory.

PC2 Administrator’s Guide 76 http://pc2.ecs.csus.edu/

9 Monitoring Contest Status

9.1 Team Startup Status

The Team Status tab on the main Administrator screen Run Contest tab is used to track the
status of Teams once a contest has been started. This is particularly useful during a “practice contest”
held just prior to a real contest; it allows the Contest Administrator to verify that all teams have been
able to login and use the basic PC2 functions successfully.

A sample Team Status screen is shown below. Initially all teams are displayed in RED,
indicating that the team has not made any contact with the PC2 server. When a team logs in, their
display changes to YELLOW; when they have submitted at least one run or clarification request
their display changes to MAGENTA or BLUE respectively; once a team has successfully submitted
both a run and a clarification the display changes to GREEN, indicating the team has successfully
performed all the basic PC2 functions and should be ready to use the system in the real contest. (The
screen below shows teams in each of these states, although it may be hard to read if you are not
looking at a color copy of this manual.)

PC2 Administrator’s Guide 77 http://pc2.ecs.csus.edu/

9.2 The Runs Display

The Runs tab on the Run Contest tab on the Administrator screen displays a grid showing all
the runs which have been submitted so far in the contest (from all teams, at all sites). The run display
grid can be sorted on any column by clicking in the column header; clicking multiple times toggles
the sort between ascending and descending order. The columns can also be resized by moving the
column separators in the header. An example run grid is shown below.

The Runs display provides a number of capabilities for the Contest Administrator. One
function of this display is to provide the ability to select a run which has already been judged (and
hence no longer appears on the Judge’s grid of available runs) and “give it back to the Judges” so
that it may be re-judged. (Note that this assumes an Administrative decision to re-judge a run has
been made for some reason; this is not a normal contest operation.)

To give a run back to the Judges, click on the row containing the run to select it, then click
the Give button. This will cause the run to appear on the Judge’s screens so that it can be selected
and re-judged. (Note: when a Judge selects a run which has been sent for re-judging, a warning
message is displayed on the Judge’s screen asking for verification that the run really is intended for
re-judging.) A run does not disappear from the Administrator’s grid when it is sent for re-judging;
the Administrator always has a complete listing of every run submitted in the contest, from all teams
at all sites.

PC2 Administrator’s Guide 78 http://pc2.ecs.csus.edu/

A second purpose of the Runs display is to allow the Administrator to “take a run away”
from a Judge. This can be used, for example, to take back a run which was given in error to the
Judges for re-judging. Any time there is a run on the Judge’s display grid which should not be there
(because it has already been judged and is not intended to be re-judged, for example), click on the
run in the Administrator’s Runs display then click the Take button. This will remove the run from
the Judge’s screens.

9.3 Editing Runs

Another function of the Runs display is to allow the Contest Administrator to edit various
parameters associated with a specific run – for example, to mark a specific run as “deleted” or to
change the effective submission time of a run. This allows the Contest Administrator to make
decisions regarding unanticipated situations affecting how a run should be considered in scoring.40

To edit a run, select the run in the Runs grid and then press the Edit button. This will bring
up the following Edit Run dialog:

The “Problem”, “Language”, and “Judgment” drop-down lists allow the Administrator to

alter the specification of the corresponding attributes associated with the run. It is allowable to

40 It is assumed that the Contest Administrator understands the ramifications of changing run attributes; for example,

that changing the Elapsed Time affects the number of penalty points assigned to the run, changing the Problem affects
how many runs a team has submitted for a given problem, etc. PC2 is not smart enough to decide whether you should
change the attributes of a run; it just gives you the capability to do so.

PC2 Administrator’s Guide 79 http://pc2.ecs.csus.edu/

change multiple attributes of a run during a single edit (although this would be unusual; normally,
editing a run is done for a single specific purpose such as correcting a judging error).

Changing the “Problem” attribute will have the effect of changing the way in which this run
is considered in scoring: it will be counted as a run for the newly specified Problem (however, this
will only have an actual effect on the scoring results if the Team has correctly solved the newly
specified Problem; see the chapter on the Scoreboard for details). Changing the “Language”
attribute will have the effect, if the run is subsequently re-executed, of changing the language
definition (compiler invocation) used to compile and then execute the run. Changing the “Judgment”
attribute will have the effect of causing the newly specified judgment to be the one used by the
Scoreboard in determining whether the Team has correctly solved this problem.

“Elapsed Time” represents the elapsed time in minutes from the start of the contest (contest
elapsed time, not counting minutes during which the contest clock was stopped) at which the run
was received. The Administrator can change this value as desired. Note that Elapsed Time is
considered the “team submission time” and is used to determine the calculation of penalty points
assigned to the run.

Checking the “Delete Run” box will cause the run to be completely ignored in all scoring
computations. Elapsed Time, Judgment value, and all other attributes of a run which is marked
“Deleted” have no effect on scoring. A run marked as deleted no longer shows on the appropriate
Team’s grid. (“Deleted” runs do not actually get removed from the database (nor from the Runs
display), they are simply marked as such to indicate they should be ignored for scoring purposes.)
If a run has been previously marked as deleted and subsequently the Mark Run as Deleted box is
unchecked, the run is once again considered in further scoring computations, with no indication that
it was previously “marked as deleted”.

The “Notify Team” checkbox is used to indicate whether or not the Team which submitted
this run should be sent a notification of the “Judgment” value applied to this run after it has been
edited. Normally, editing involves correcting an internal administrative error and it is not desirable
to notify the Team of any editing, so the default operation is to suppress Team notification. If it is
desired that the Team should receive a notification of the result of editing the run (for example, a
judgment was changed from NO to YES and the Contest Administrator wishes the Team to know
this), uncheck the “Suppress Team Notification” checkbox.

The Execute button allows the Contest Administrator to execute a run just as it would be
executed on a Judge’s machine. This is useful, for example, when a Team submitted a run with an
incorrect language specification (which most likely caused a Judge to render a “Compilation Error”
judgment for the run), and it is desired to determine what the result would have been if the language
specification had been correct. The Language drop-down list can be used to change the language
attribute of the run, and it can then be executed at the Admin workstation. Note, however, that the
Execute function will only work correctly on the Admin workstation if the workstation has been
configured with the necessary language compilers, in the same way as on a Judge’s machine.

Once a run has been edited (and re-executed if desired), pressing the Update button will store
the new specification of the run’s attributes in the database and, if team notification has not been
suppressed it will send a notice of the run status to the Team. Note that once an update has been
applied, the former state of the run is lost; there is no way to restore a run to a prior state once it has

PC2 Administrator’s Guide 80 http://pc2.ecs.csus.edu/

been edited (other than simply re-editing the run and changing the values back – but PC2 does not
keep track of the old run state once the Update button has been pushed).

9.3.1 Extracting Runs

The Extract button on the Edit Run dialog allows the run being edited to be “extracted”

(exported) to a separate directory. When the Extract button is clicked the following will appear:

The extract directory is located under the $PC2HOME directory. If Run 2 for Site 1 was
being edited and the Extract button was pushed, the following files would be created in the extract
directory:

extract/site1run2/pc2.run2.txt
extract/site1run2/Prac.java

The pc2.run2.txt file contains information about the run including Run #, Site #, Team Id,
Problem Name, Language Name and contest elapsed time for example:

...

Run : 2

Site : 1

Team : TEAM5 @ site 1

Prob : Bowling for Crabs

Lang : Java

Elaps : 2

...

The second file (Prac.java in the example above) contains the source code which was
submitted for the run which has been extracted.

The current version of PC2 has no way to extract multiple runs with a single action; to extract
several runs it is (unfortunately) necessary to Edit each run and extract it individually. (Yes, fixing
this is on our list of “to-do’s”).

PC2 Administrator’s Guide 81 http://pc2.ecs.csus.edu/

9.4 Filtering Runs

It is frequently desirable to view a subset of the complete set of runs which are currently in
the database. For example, the Contest Administrator may be interested in looking at all the runs
for a given Problem, or all the runs from a given Team, or all the runs submitted during a specific
window of time, or some combination of these.

The Administrator Runs display has associated with it a filter which can be used to apply a
set of filtering criteria to the runs which are displayed.41 Pushing the Filter button on the Runs
display screen will produce the following dialog, which is used to set the filtering criteria:

Selecting a set of items in the filter dialog indicates that those items should be displayed on
the Runs grid. For example, to specify that the Runs grid should display all (and only) runs from
Team 1 at site “Site 1” for the problem named “Sumit”, you would select “Sumit” in the Problems
column, “team1” in the Teams column, “1 Site 1” in the Sites column, and “All” in the Language,
OS, and Time columns, and then press the Update button. The Runs grid would then apply the
specified filter criteria to all runs, displaying only those that match the selected criteria.

In order to remind the user when filtering of runs is taking place, any time a filtering
operation has been selected the “Filter” button on the Admin screen will change color to blue and
will indicate “on”, like so: Filter (ON). Disabling filtering (using the “Clear All” button as
described above) will return the Filter button to its normal state.

 The “Ok ” field is used to specify the command line which is used to compile source code
and produce an “executable program file” in the language.

The Ok button will save the filter settings and if the filter is ON will update the Runs list with
the filter settings.

41 The Judge client provides a similar filtering operation; the discussion here on filters applies equally to the Judge.

PC2 Administrator’s Guide 82 http://pc2.ecs.csus.edu/

The Apply button will immediately reload the Runs list with the filter settings (if Filter On is
checked). This can be used to quickly find runs based on the filter instead of having to use 3 steps
to see the filtered results. Three steps would be: 1) (Edit) Filter, 2) change filter 3) Ok button

9.5 Clarifications

The Clarifications tab on the main Administrator screen Run Contest tab, shown below,
displays a grid showing all the Clarification Requests which have been submitted so far in the contest
(from all teams, at all sites), in a format similar to the Runs grid. Like the Runs grid, the Clarification
Request grid can be sorted and resized by manipulating the columns headers. The Give and Take
functions work like the Give and Take on the Runs pane.

PC2 Administrator’s Guide 83 http://pc2.ecs.csus.edu/

9.6 Reports

The Reports tab on the main Administrator screen provides a variety of options for
generating statistical reports about a contest, both during and after the contest. Note that the Reports
tab appears on both the Configure Contest and Run Contest Administrator tab. The Reports screen
looks like the following:

The “Reports” drop-down list allows choosing one of a number of different report formats.
The list of available reports is summarized in the table shown below. Pressing the “View Report”
button will pop up a display showing the content of the selected report, and will also write the
selected report in text form to a file (located by default in the $PC2HOME directory)

Pressing “Generate Summary” will generate all the following reports: Balloons Summary,
Clarifications, Contest Analysis, Contest Settings, Contest XML, Evaluations, Fastest Solutions Per
Problem, Fastest Solutions Summary, Groups, ICPCTools Event Feed, JSON Standings, Languages,
Problems, Runs, Runs (Version 8 content and format), Runs grouped by team, Scoreboard, Solutions
By Problem, Standings Web Pages, Standings XML, Submission, and Submissions by Language.
When all reports are written a dialog will appear that shows the directory where the reports were
saved. Reports will be saved in the profiles\P<profileid>\reports directory.

9.6.1 Automatic Generation of Reports at End of Contest

When a server is shut down and there are less than 30 minutes remaining in the contest, the
following reports will be automatically generated in the reports directory.

PC2 Administrator’s Guide 84 http://pc2.ecs.csus.edu/

Report Description

Account Permissions Report For each client list their Permissions/Abilities

Accounts List summary of accounts per site, and individual accounts sites,
logins, passwords.

All Reports List contents of all reports

Balloons Delivery List of all balloon deliveries by team, by problem and time of
delivery

Balloons Summary List summary of which teams should have which color balloons.

Clarifications List all clarifications

Client Settings Various settings like Notification settings

Contest Contest settings in XML (work in progress)

Contest Analysis Summary of submissions, unjudged runs, various checks on runs.

Evaluations One line per judgment output

Extract Replay Runs Files extracted used with Replay feature

Fastest Solved by Problem List all run solving problems by fastest, by problem, and fastest
solution showing rank, elapsed, team name

Groups List of Groups (Regions)

Internal Dump An internal dump of a bunch of config settings

Judgement Notifications List (balloon) notifications grouped by problem.

Judgements List of judgments

Languages List Languages

Logins List who is logged in

Notification Settings List of Notification Settings

Problems List problems

Run 5 field List of runs: run #, team #, problem letter, elapsed time, judgment

Run Notifications Sent

Runs List of runs, with run#, run state, team #, team name, whether
judgment sent to team and details on each judgment

PC2 Administrator’s Guide 85 http://pc2.ecs.csus.edu/

Report Description

Runs (Version 8 content and
format42)

List of runs with detail (see below)

Runs grouped by team List of runs, grouped by team, then by problem, helpful in
calculating scoring.

Solutions By Problem For each problem show number of run with No, Yes, and
percentage correct

Standings XML Standings in XML format

Submissions by Language A summary of how many teams used which languages.

9.7 Event Feed

PC2 complies with the CLICS Contest Control System specification (found at
https://clics.ecs.baylor.edu/index.php/Contest_Control_System). Among other things this means
that it generates an event feed providing external tools with real-time notification of events which
occur in the contest.

Note in particular that this means that PC2 is compatible with the ICPC Tools suite of contest
utilities. The PC2 Event Feed can be used for example to drive the ICPC Tools Resolver to produce
dynamic displays revealing the final results of the contest (at an Awards Ceremony, for example).
It can also be used to drive the ICPC Tools Balloon Utility, an interactive tools for managed balloons
during a contest, as well as a variety of other contest utilities available in the ICPC Tools.

For details on the PC2 Event Feed mechanism and how to use it, see the Appendices. For
information on the ICPC Tools suite of contest utilities, visit https://icpc.baylor.edu/icpctools/.

9.8 Web Services

PC2 contains an embedded web server which provides a variety of REST-based web services.
Currently-implemented services include resources for obtaining the current list of contest teams,
problems, languages, and the CLICS 2016 JSON Scoreboard. Also included are REST services for
managing automated (scheduled) contest start time. For details on the PC2 REST Services and how
to access them, see the Appendices.

42 Example single line of output: run 59|site 1|proxy |team 11|team11:Crimson Pride (WSU)|prob D - Obstacle Course-
6938491730217106684:D - Obstacle Course|lang GNU C++-1782097724418977383:GNU C++|tocj |os Linux|sel
false|tocj false|jc true|182|rid Run-2641274401129060175|mmfr true|del? false|jt 0|jby judge5|jci Yes|

PC2 Administrator’s Guide 86 http://pc2.ecs.csus.edu/

10 The PC2 Scoreboard

10.1 Overview

PC2 contains a separate “Scoreboard” module which keeps track of the current standings in a
contest. The scoreboard provides several functions: it automatically generates HTML pages
describing the current state of the contest in a variety of formats; it generates email and/or printed
balloon notifications43 (when that option has been selected by the Contest Administrator; see the
section on “Options”, above); and it provides the capability to generate an “export” file containing
contest standings data (in the form required for importing into the ICPC Contest Management
System (CMS)).

Some contests are run by displaying the actual, current contest standings on a scoreboard
throughout the duration of the contest. However, many contests are run using the concept of a
“scoreboard freeze” – that is, a period of time near the end of the contest when the judge’s responses
to team submissions (and the effects of those responses on the contest standings) are hidden, to be
revealed at a post-contest ceremony. During such a “scoreboard freeze period” any submissions
received from teams are displayed on the scoreboard as “Pending”, and the results of those
submissions (and their effects on the contest standings) remain hidden.

The PC2 Scoreboard module supports generation of two different sets of HTML files: one set
which respects any configured scoreboard freeze (referred to as the public or freezable scoreboard),
and a second set which shows the current actual contest standings, ignoring any “freeze period”. In
a contest utilizing a scoreboard freeze, the first (freezable) set of HTML files is appropriate for
“public viewing”, while the second set is intended for “private” viewing only by authorized contest
personnel.

The public and private scoreboard HTML files are automatically written into two separate
(configurable) folders; see the section below on Configuring Scoring Properties for details.
Managing the settings for the time in the contest at which the public scoreboard becomes “frozen”,
and for when it subsequently becomes “unfrozen” so that the final standings are publicly viewable,
is controlled by settings on the Admin Configure Contest > Settings tab (see the section on Options
in the chapter on Interactive Contest Configuration for further details).

10.2 Scoring Algorithm

The algorithm used in PC2 to compute Rank and “Score” (Penalty Points) is the one used in
the ICPC World Finals, which is as follows:

1) Teams are ranked according to the number of problems solved; a team solving more
problems is always ranked higher than a team solving fewer problems.

2) Within a group of teams solving the same number of problems, teams are ranked by
increasing “Penalty Points” (that is, the team with the lowest number of Penalty Points

43 While PC2 contains its own internal “Balloon notification” capabilities, since Version 9.5 it is compatible with the

ICPC Tools “Balloon Utility” (see https://tools.icpc.global/). Because the ICPC Tools Balloon Utility is
considerably more robust and flexible, we recommend using that tool to support management of balloons.

PC2 Administrator’s Guide 87 http://pc2.ecs.csus.edu/

is ranked highest within the group). Teams only accrue Penalty Points for problems
which the team has solved; unsolved problems do not affect the scoring in any way.
Teams accrue Penalty Points for solved problems in two ways:

 Some number of penalty points for each minute elapsed from the start of the
contest until the problem was solved (the time of SUBMISSION is counted as
the “time solved”; it does not matter how long it took the Judges to judge it).

 Some number of penalty points for each INCORRECT submission submitted to
the Judges prior to a correct solution for the problem (runs submitted after a
correct solution are not counted in the scoring).44

3) If two or more teams have the same number of solved problems and exactly the same
number of Penalty Points, ties are broken in favor of the team with the earliest time of
the last correct submission (that being the time when the team “finished” the contest).

4) If two or more teams remain tied for a given rank after all the above criteria have been
applied, the teams are listed in alphabetical order within their rank by the team’s “display
name”.

 Examples of the PC2 scoring algorithm can be found in the PC2 Wiki article Scoring
Algorithm at http://pc2.ecs.csus.edu/wiki/Scoring_Algorithm.

10.3 Configuring Scoring Properties

Certain properties used in scoring are configurable by the Contest Administrator. To adjust
scoring properties, select the Settings tab on the Contest Administrator45 Configure Contest tab, then
press the Edit Scoring Properties button. This will bring up the following dialog:

44 In the ICPC World Finals the number of penalty points for each incorrect submission prior to solving a problem is

always 20 and the number of penalty points per minute until the problem is solved is 1; these are the default values
in PC2 (although PC2 allows the Contest Administrator to change these values).

45 Note that while Scoring Properties control the computations performed by the Scoreboard module, for security
reasons they are only editable on the PC2 Admin.

PC2 Administrator’s Guide 88 http://pc2.ecs.csus.edu/

The Scoring Properties have the following meanings:

 Base Points per Yes: the number of penalty points, in addition to Points per Minute (for 1st
yes)), which are always assigned to submissions which correctly solve a problem.

 Output HTML dir for Judges: the name of the folder where the scoreboard will output HTML
files showing the actual current contest standings. This output ignores any “scoreboard
freeze”; it shows the actual current contest standings. Typically the contents of this folder
would be made available only to Judges and other privileged contest personnel.

 Output Public HTML dir: the name of the folder where the “public” scoreboard HTML files
will be placed. The data written to this folder will respect any “scoreboard freeze” that is
configured. That is, it will not show results for any submissions sent in during the “freeze
period”, but rather will show any such submissions as “Pending”. Typically the contents
of this folder are made available to the general public as the “Current Standings”.

 Points per Compilation Error: the number of penalty points assigned to submissions which
fail to compile.

 Points per Minute (for 1st yes): the number of points, for each minute elapsed in the contest,
assigned to submissions which correctly solve a problem – from the start of the contest
until the time of the correct submission. (Note that only the FIRST correct submission is
counted; if a team subsequently submits another run for the same problem which correctly
solves the problem, no points are assigned based on this category.)

 Points per No: the number of penalty points which are assigned for each incorrect
submission on a problem prior to the problem being solved (but only if the problem is
eventually solved; unsolved problems accrue no penalty points).

 Points per Security Violation: penalty points added to a submission which generates a PC2
Security Violation. Note that Security Violations can only be generated if a PC2 Security
Manager (“sandbox”) is installed in the system.

Note that all the above scoring properties can also be set using YAML configuration settings; see
the chapter on Configuring the Contest via Configuration Files for details.

Note also that changing scoring property values only affects that particular scoring criterion; it does
not alter the overall determination of ranking criteria. For example, assigning a negative value to
one property does not change the fact that teams are ranked first by number of problems solved; a
team with a large negative score will still not be ranked higher than a team which has solved more
problems.

10.4 Starting the Scoreboard

To start a scoreboard, go to a command prompt in the PC2 installation directory and type the
command “pc2board”. This will start a PC2 client expecting a scoreboard login. Once the Client

PC2 Administrator’s Guide 89 http://pc2.ecs.csus.edu/

login window appears, enter the scoreboard account name and password as defined when PC2
accounts were created.46

Logging in to a scoreboard account will bring up a PC2 Scoreboard display window, similar
to the one shown below, indicating that the scoreboard program is running.

The scoreboard automatically generates a complete set of public and private HTML files as
described above as soon as it is started. Thereafter it generates updated HTML files periodically
according to an algorithm described below (see Scoreboard Updates). Each time a new set of HTML
files is generated the scoreboard display window is updated to show the most recent update time.

Note that the display generated by the PC2 Scoreboard module (shown above) always
contains the actual current contest standings. That is, the Scoreboard module display does NOT
respect any “scoreboard freeze” configured in the contest. Only the HTML files generated in the
“public HTML folder” pay attention to freeze period values. For this reason, the Scoreboard module
display should be considered a “private” scoreboard. (This is another reason for being sure to
change the scoreboard account password.)

46 Recall that by default, account passwords are the same as the account name. If the scoreboard account password(s)

are not changed by the Contest Administrator, it would mean that any team could start a scoreboard running on their
own machine, allowing them to look at the contest standings even during times when the Contest Administrator has
decided to hide that information (such as near the end of the contest, which is the policy in some contests). We
strongly recommend changing the scoreboard account passwords.

PC2 Administrator’s Guide 90 http://pc2.ecs.csus.edu/

Under normal circumstances it is only necessary to have a single PC2 scoreboard running,
even in a multi-site contest. The scoreboard automatically receives update information from every
site server, and generates HTML files describing the overall contest status (including all sites).
These HTML files can be copied to a publicly-accessible location for access by a browser (see
below), so participants at any location can see the current standings. In addition, a single scoreboard
can generate balloon notifications for all sites. Thus there is rarely a need for running more than
one PC2 scoreboard in a contest, and this is the recommended mode of operation.

10.5 Scoreboard Updates

Once the scoreboard module is running, it waits passively until some contest event occurs
which could alter the data it should display. When any such event occurs, the scoreboard obtains an
update of the contest state from the server, computes the new standings based on this information,
and regenerates the HTML display files. The date and time of the last scoreboard update is shown
on the scoreboard module window.

Any of the following events will cause the scoreboard module to generate new HTML files:

 Scoreboard module is started

 Scoreboard module Refresh button is clicked.

 Any run is judged

 Any run judgment is changed (via Edit Run)

 Contest configuration definitions/settings are changed (accounts, languages,
problems, etc.)

10.6 Scoreboard HTML Files

 Each HTML file generated by the PC2 scoreboard is a complete stand-alone HTML document
(i.e. is bracketed by <html> … </html> tags). Each document <head> includes a <title> tag, into
which PC2 places the Contest Title as specified by the Contest Administrator (see Options, above).
Each document <body> contains an imbedded <table> holding contest status information. Each
HTML file is also in an XML formatted document.

The <table> in each different HTML file contains a different set of contest information, such
as team rankings, run submission statistics, etc. (see below). The information outside the <table>
can be edited/replaced as desired, for example by adding additional header information, frames, or
any other HTML constructs. However, it is important to keep in mind that the set of HTML files is
completely regenerated on every scoreboard update; changes made manually to an HTML output
file will only persist until the next scoreboard update (see the section on Adding New HTML files
for information on how to alter the HTML scoreboard file contents).

The following HTML files are always generated by the scoreboard :

PC2 Administrator’s Guide 91 http://pc2.ecs.csus.edu/

File Name Table Contents

full.html Columns showing rank, team display name, number of problems solved, and penalty
points, with rows ordered by rank.

fullnums.html Same as full.html except that the Team Display Name is preceded by the Team
Number followed by a dash.

sumtime.html

A grid showing, for each team and each problem, the number of runs submitted by
the team for the problem, and, if the team has solved the problem, giving the contest
elapsed time of the team’s solution. The rows in the grid are listed by team number
(not rank).

sumatt.html
A table similar to the sumtime table but instead of giving the time of solution for
solved problems simply indicates “Y” or “N” according to whether the team has
solved the problem. The rows in the grid are listed by team number (not rank).

summary.html

A table combining the full and sumtime displays described above – that is, a grid
showing rank, team display name, number of problems solved, penalty points, and
number of runs submitted and solution time for each problem, with rows ordered by
rank.

Index.html

A table showing the same data as summary (above), but also including header
information showing the Contest Title and a “Scoreboard Message” indicating
whether this scoreboard is “Live” (i.e., a “private” scoreboard showing current,
actual standings) or instead a “public” scoreboard which will show submissions
received during the “scoreboard freeze period” as “Pending”. For public scoreboards
the “Scoreboard Message” automatically changes from showing “Time until freeze
goes into effect” (before the freeze period starts) to “Scoreboard was frozen at
<time>” during the freeze period, and to “Final Standings” after the contest has been
finalized.

The public and private HTML scoreboard pages are written to local files on the machine on
which the PC2 scoreboard is running. One common way to take advantage of the HTML files
generated by the scoreboard is to run a separate external process (e.g. a batch script47) which
repeatedly copies the current public HTML files to some external location (web site), reformats them
if desired, and makes them available to teams and spectators using a browser.

There are several advantages to this method of operation. First, the details of the appearance
of the scoreboard can be customized by the Contest Administrator external to PC2. Thus the Contest
Administrator can choose to take advantage of the full set of scoreboard screens, or can choose to
omit some or all of them. In addition, it is not necessary for teams, judges, spectators, etc. to run
separate PC2 scoreboards, since most users will already have access to a browser. The Contest
Administrator can arrange that the external scoreboard script builds the desired scoreboard display
and puts the resulting HTML in a standard public location accessible to all user’s browsers.

47 A sample batch script is included with the samples: samps/web/distribute_score .

PC2 Administrator’s Guide 92 http://pc2.ecs.csus.edu/

10.7 Scoring Groups

In addition to the above files, the scoreboard can be made to generate separate HTML files
showing rankings based on the concept of “groups” or “regions” with which a team is associated.
For example, in the ICPC World Finals, teams compete not only for placement in the overall world-
wide standings, but also among teams from their own region of the world for the regional
championship. Other examples include situations where it is desirable to break contest teams up
into separate groups based on level of experience (e.g. “lower division” and “upper division”
students), and in multi-site contests where it is desirable to be able to display rankings that show
only those teams participating at a given site.

Every PC2 account has associated with it a “Group” identifying the region or group to which
the account belongs. By default accounts do not belong to a group. Changing the group for a
particular team account associates that team account with other all teams in the same group.

By default, the scoreboard ignores groups. In order to cause the scoreboard to pay attention
to Groups, three steps are required. First, the contest administrator must define the groups to the
system. Second, team accounts must be assigned to a group. Third, the contest administrator must
provide an XSL file describing how to generate the HTML file representing the group standings (see
the section below on Managing HTML File Generation).

Groups can be defined either manually or by using the “import” functions on the ICPC tab
on the main Contest Administrator screen. To manually define a new group, select the Groups tab
on the Configure Contest tab of the main Administrator screen. This will display a screen similar to
the one shown below.

PC2 Administrator’s Guide 93 http://pc2.ecs.csus.edu/

Click the Add button to add a new Group. This will display the following Add New Group
dialog:

In the Display Name field enter a name for the new group (for example, “Upper Division”
or “Site 1”). The “PC^2 Site” dropdown list and the “External Id” field can be ignored.

If your contest is supported by ICPC Headquarters48, groups can be set by using the “import”
functions on the ICPC tab (see the Appendix on ICPC Import/Export Interfaces).

Once groups are defined, accounts can be assigned to a group (an account can belong to at
most one group). Groups can be set when user accounts are first defined, or by editing accounts
later (see the section on User Accounts earlier in this manual).

The third step required to make use of groups is to define the way in which PC2 should
generate HTML output for the groups. This is described in the following section.

10.8 Managing HTML File Generation

PC2 uses two data sets to create scoreboard output HTML files. The first data set is a pair of
eXtensible Markup Language (XML) document strings containing the contest standings – one string
for the public (freezable) version, the other for the private (live) version. These strings are
automatically generated whenever the standings change, and are cached internally. In addition, the
private (live) version is written to a file named results.xml (overwriting any previous contents) each
time the standings change.

The second data set used for scoreboard output file creation is a collection of eXtensible
Stylesheet Language (XSL) files describing how the XML standings should be transformed
(processed). Whenever the contest standings change, the scoreboard module generates a new pair of
standings XML strings, saves the private (live) version to the results.xml file, then looks in the
current directory for a folder named data containing a subfolder named xsl. If the data/xsl folder is

48 All ICPC Regional Contest Directors have access to the PC2 ICPC Import Data files describing all the teams

registered for their Regional Contest, including their groups (“sites”).

PC2 Administrator’s Guide 94 http://pc2.ecs.csus.edu/

present, the scoreboard looks there for a set of XSL files (filenames ending in .xsl) to control
processing.

If no data/xsl folder is found in the current directory, the scoreboard instead looks for data/xsl
under $PC2HOME. The standard PC2 distribution includes a collection of .xsl files – one for each of
the standard HTML output files listed above – in the $PC2HOME/data/xsl folder.

The scoreboard reads each .xsl file found in the data/xsl directory and uses the XSL
transformations specified in that file to create a new .html file in the appropriate (public or private)
html directory.49 For example, the presence of a file named full.xsl will create the file full.html.

The contest administrator can generate additional HTML output files by placing additional XSL
files in the data/xsl folder; each XSL file in the data/xsl folder will cause a corresponding HTML
output file to be generated.50 There are numerous sample XSL files in the samps\web\xsl directory
which can be copied into data/xsl (and then edited as desired). There are also sample XSL files in
samps\web\xsl that create per-region HTML files and World Finals HTML files; see the file
samps\web\xsl\README for more details.

The XML standings string which is transformed by each .xsl transformation file is a hierarchical
XML document containing a variety of data fields which can be accessed by the XSL
transformations and which can therefore be used to “customize” the resulting HTML output file.

For example, the XML standings string contains a root node named /contestStandings, below
which is a node named /standingsHeader. The /standingsHeader node contains two fields, @title
(holding the current Contest Title) and @scoreboardMessage (holding a message indicating whether
the standings are for a “live” (private) or “freezable” (public) scoreboard.

Thus, the inclusion of a line in an XSL transformation file such as

<h2><xsl:value-of select="/contestStandings/standingsHeader/@title"/></h2>

will place the Contest Title at that position in the HTML output (using <h2> font), while the
appearance of a line such as

<xsl:value-of select="/contestStandings/standingsHeader/@scoreboardMessage"/>

in the XSL transformation file will place the “scoreboard message” at that position in the HTML
output. See the PC2 wiki page at https://github.com/pc2ccs/pc2v9/wiki/Scoreboard-Standings-
Data-Fields for a complete listing of all the contest standings XML attributes which are accessible
to XSL Transformation files.

49 In fact, it is the presence of a .xsl file in the data/xsl folder which causes the generation of a corresponding HTML

output file.
50 The Scoreboard module can also generate output files other than HTML from the XML standings. Specifically, it

also looks for files in the data/xsl folder whose names end with .json.xsl, .tsv.xsl, .csv.xsl, and .php.xsl, and if found it
will apply the XSL transformations in those files to the XML standings, producing corresponding output files (.json,
.tsv, .csv, or .php).

PC2 Administrator’s Guide 95 http://pc2.ecs.csus.edu/

10.9 No-GUI Mode

Beginning with PC2 Version 9.5 the scoreboard can be started in “no GUI” mode by adding
the argument “--nogui” to the pc2board startup command. A scoreboard started in no-GUI (also
called “headless”) mode does not provide a direct graphical display of the current standings – but it
does continually generate all the specified scoreboard HTML files as described above, including
automatically updating them as described above.

This can be useful in a situation where the scoreboard machine is being managed remotely
from a terminal without a graphical display. It can also be useful to avoid having the “actual current
standings” visible in the Scoreboard module display if the module is being run at a location where
people should only be allowed to see the “public standings” which respect the “scoreboard freeze”.

PC2 Administrator’s Guide 96 http://pc2.ecs.csus.edu/

11 Finishing the Contest

 When the contest is over, there are typically a number of additional steps required to “finish up”.
These include “finalizing” the results, optionally exporting the results for upload to another system,
and shutting PC2 down smoothly. This chapter discusses each of those tasks.

11.1 Finalizing

“Finalizing” a contest refers to certifying to PC2 that the contest has been completed.
Finalization checks several things: insuring that all submitted runs have been judged, that all
clarification requests have been answered (even if just nominally), and that event feeds are closed
properly. In addition, Finalization allows for providing an indication of what “medals” should be
awarded. (This latter step is provided for compatibility with the CLICS CCS specification and is
used at the ICPC World Finals; it may or may not be relevant to your own contest.)

Finalizing is done via the Finalize tab on the Admin Run Contest screen, shown below. Pressing
the “Finalize” button causes PC2 to check that all prerequisites for finalization have been met, and if
so to mark the contest “finalized”.

Finalizing a contest also has the side effect of generating a results.tsv file containing the final
contest standings (this file can then be uploaded to external systems such as the ICPC Contest
Management System; see below). Note that in the screen shot shown above, the “Finalize” button
has already been pushed, as indicated by the message giving the location of the results.tsv file (this
file will not be generated if the contest cannot be finalized for some reason, such as remaining
unjudged runs). See the following section for more information on results.tsv.

Finalizing also has the additional effect of enabling the “public” scoreboard to be “Unfrozen”
(see the section on Options in the chapter on Interactive Contest Configuration, as well as the chapter
on the PC2 Scoreboard, for additional details on scoreboard “unfreezing”).

PC2 Administrator’s Guide 97 http://pc2.ecs.csus.edu/

The Report button on the Finalize screen can be used to view and save a copy of a “Finalization
Report” for the contest; the View button can be used to view and save a copy of the results.tsv file
after it has been generated

11.2 Exporting Contest Results

When a contest is completed, it is sometimes desired to be able to transmit the contest results
to other, external systems – for example, by uploading the results to the ICPC Contest Management
System (CMS). PC2 supports two different mechanisms for exporting contest results. The preferred
method is to generate a results.tsv file. An older method, generating a pc2export.dat file, is also
retained for backwards compatibility with older external systems.

11.2.1 Generating a results.tsv export file

PC2 automatically generates a file named results.tsv when the contest is “Finalized” (see the
section on Finalizing, above). The generated file contains a complete summary of contest results
and matches the format for results.tsv specified by the CLICS CCS specification at
https://clics.ecs.baylor.edu/index.php/Contest_Control_System#results.tsv; this file is therefore
suitable for direct uploading to the ICPC CMS. See the Appendix on Import/Export Interfaces for
further details on the format of the results.tsv file. The PC2 Wiki page at
https://pc2.ecs.csus.edu/wiki/Results.tsv also contains more information on the results.tsv file.

11.2.2 Generating a pc2export.dat export file

The PC2 Scoreboard automatically generates a text file named pc2export.dat containing
contest standings on the occurrence of any scoreboard refresh event as described earlier in the
Scoreboard chapter. The pc2export.dat file is created in the directory where the Scoreboard was
started.

 The pc2export.dat file contains, for each team, a record giving the number of problems
solved, the total number of penalty points accrued on solved problems, and the time of last
submission of a correct solution (used in the ICPC World Finals as a tiebreaker). See the Appendix
on Import/Export Interfaces for further details on the format of the pc2export.dat file.

11.3 Shutting Down

Clients (team, judge, scoreboard, and admin) can be shut down by pressing the Exit button
in the upper right corner of their GUI.

PC2 servers can likewise be shut down by using the Exit button on the Server GUI (shown
below). When a server is shutdown, all clients currently logged in to that server will also be
shutdown.

 For servers running in non-GUI mode, use the Shutdown button on the Sites tab on the
Administrator: select a site and press Shutdown to shut down the server for that site. Selecting
multiple sites and pressing Shutdown will shut down all those site servers.

PC2 Administrator’s Guide 98 http://pc2.ecs.csus.edu/

PC2 Administrator’s Guide 99 http://pc2.ecs.csus.edu/

Appendix A – pc2v9.ini Attributes

As described in the chapter on PC2 Initialization Files, the pc2v9.ini file consists [server]

and [client] sections, with each section containing one or more "attribute assignment" statements of
the form attributeName=value. Lines in the file which begin with a “#” or “;” character are
ignored, as are blank lines. Attribute names (left side of the equal-sign) are not case sensitive;
however, string data on the right side of the equal-sign is case sensitive.

The following list gives the attributes which can be defined in each section of the
pc2v9.ini file, along with a description of their function.

[server] section attributes:

port=<portNumber>

Tells the server the port number on which it should expect to be contacted by clients, and by
other PC2 servers in a multi-site contest. This attribute may be omitted from the pc2v9.ini
file, in which case it defaults to 50002. Note that if you choose to assign a specific port
number, then all clients and other servers contacting this server must also be told to use this
same port number (this is specified with the “server=” attribute in the case of clients, and
with the “remoteServer=” attribute in the case of other servers). Note also that if you choose
to assign a specific port number, the port number should be greater than 49151 according to
the conventions established by the IANA (Internet Assigned Numbers Authority)51.

remoteServer=<IPAddress>:<portNumber>

Tells the server the IP address and port number of a remote PC2 server at another site which
it should contact in order to join a multi-site contest. The <portNumber> must be specified
and must match the port number being used by the server at the remote site. The appearance
of this attribute makes this server a “secondary” server; if this attribute is not defined in the
[server] section then this server is a “primary” server and waits passively to be contacted by
other site servers.

proxyme=true

Tells a server which is connecting to a remote server to ask that remote server to act as a
proxy for communications with other servers. If this attribute is defined for a server, no other
server will ever attempt to make an inbound connection to this server – meaning it is not
necessary to open up any firewall ports for inbound access on this server. If this server is a
primary server (i.e. does not contain a remoteServer= entry in its pc2v9.ini file and hence
does not connect to a remote server), this attribute has no effect.

baseRunNumber=<positive_integer>

The run ID number to be assigned to the first run submission from teams at this site. RunIDs
are assigned increasing sequential integers starting with this value (the default

51 http://www.iana.org/assignments/port-numbers

PC2 Administrator’s Guide 100 http://pc2.ecs.csus.edu/

baseRunNumber value is 1 for each site if this attribute is not present in that site’s
pc2v9.ini file). This attribute allows the contest administrator to guarantee that run IDs
are unique across all sites , by assigning (for example) baseRunNumber=1001 on site one,
baseRunNumber=2001 on site two, etc.

[client] section attributes:

server=<IPAddress>:<portNumber>

Specifies the IP address and port number at which the client module should contact the PC2
server. Every client module MUST have a “server=<IPAddress>:<portNumber>” entry in the
[client] section of its pc2v9.ini file. The IP address and port number must correspond to
the address of the machine running the PC2 server and the port number at which the server
on that machine is expecting to be contacted.

plaf=<type>

 Specifies the “Programmable Look-And-Feel (PLAF)” which should be used in displaying
the client GUI. Allowable values for <type> are “java”, which causes the GUI to use the
standard Java GUI appearance (which means that client GUIs will look the same regardless
of the underlying platform), and “native”, which causes the GUI to use the underlying
platform’s “native look-and-feel” – so for example on a Windows machine the GUI will look
“Windows-like” while on a Mac the same GUI will look “Mac-like”.

PC2 Administrator’s Guide 101 http://pc2.ecs.csus.edu/

Appendix B – Networking Constraints

Overview

As mentioned in the beginning of this manual, PC2 modules must be able to communicate
with each other via TCP: clients must be able to communicate with their servers, and servers in a
multi-site contest must be able to communicate (directly or via proxies) with other servers. If client
machines reside on the same network segment as their server, and if all servers have publicly
routable IP addresses which can be reached by other servers, then communication should work with
no problems.

However, given the wide variety of network configurations which can exist – firewalls, NAT,
and VPNs, just to name a few – there may be some constraints in a given network setup which will
cause problems in setting up a contest using PC2. In order to understand how to avoid (or
circumvent) these problems, it is useful to have some understanding of how PC2 networking is
implemented.

PC2 is written in Java and uses TCP sockets for communication between modules. Server
modules listen for incoming connections, using port 50002 by default.52 Client machines initiate
connections to a (single) server based on the server=IP:port attribute in the [client]
section of the client machine’s pc2v9.ini file. Client machines only communicate with the server
specified in their pc2v9.ini file.

Server to Server Communication

When a server is started, it looks in the [server] section of its pc2v9.ini file. If there is
no remoteServer=IP:port entry in the file, the server assumes it is the “primary” (first) server
in the contest, and waits for inbound connections from clients and/or other servers.

If the [server] section of the pc2v9.ini file does contain a remoteServer=IP:port
entry, then the server assumes it is a “secondary” server and it initiates an outbound connection to
the remote server at the specified IP:port address. (This in turn implies that the primary server must
always be configured to accept such an inbound connection; there must not be any firewall blocking
inbound connections on the specified port at the primary server.)

Once a secondary server has connected to the primary server, it receives back information
identifying any other servers which may also be connected to the contest. By default it then attempts
to make a direct connection to those other servers. This in turn implies that by default all secondary
servers must be configured to accept inbound connections from other servers – that is, there must
not be any firewall blocking access to inbound connections on secondary servers. (See the section
on Proxy Sites below for information on how to avoid the necessity of opening up inbound ports on
secondary servers.)

52 The listening port is configurable via the pc2v9.ini file.

PC2 Administrator’s Guide 102 http://pc2.ecs.csus.edu/

Proxy Sites

In situations where it is desired to avoid having to open up firewall ports on secondary
servers, it is possible to arrange for proxying53. When a secondary server is started, it looks in its
pc2v9.ini file for an entry of the form proxyme=true. If this entry is present, then when the
secondary server first contacts the primary server it requests that the primary should act as a proxy
for all communications with any other servers.

When a secondary server has requested proxying like this, it will not attempt to make direct
connections to any server other than the primary, and no other servers will ever attempt to directly
contact that secondary server; all communications intended for the proxied secondary server will
automatically be routed through the proxy. The effect of this is that secondary servers which are
proxied will never be contacted by any server other than their primary – hence, a proxied secondary
server does not have to open up any firewall ports for inbound connections.

NAT

Another constraint on networking has to do with NAT (Network Address Translation). For
PC2 to work using NAT you must configure port forwarding on your firewall, and configure the PC2
site table with the public address/port for remote connections. Note that this only applies to non-
proxied servers; proxied servers do not receive inbound connection requests and therefore are not
affected by port forwarding under NAT.

53 Proxying is only available in PC2 Version 9.6 and above.

PC2 Administrator’s Guide 103 http://pc2.ecs.csus.edu/

Appendix C – PC2 Server Command Line Arguments

The command to start a server is:

 pc2server

The server accepts a number of command line options when it is started. One option is -h
(or --help), which produces the following “usage” output:

$ pc2server --help

 Usage: Starter [--help] [-F filename] [--server] [--first]
 [--login <login>] [--password <pass>]
 [--load <dir>|<file>]
 [--skipini] [--ini filename]
 [--contestpassword <pass>] [--nogui]

As seen from the “usage” output, the pc2server command actually runs a program named
“Starter” (with a --server option). The Starter program accepts the following command line options:

-F: specifies a text file with command line options, an alternate to specifying sensitive

information on the command line. See the section Using the -F option for more
details.

--server: indicates that this Starter is to run as a server, otherwise starts as a client.

--first : indicates that this server is a primary server and should not attempt to contact any

other servers (ignores any remoteServer= attribute in pc2v9.ini)

--login : specifies the PC2 login account name

--password : specifies the PC2 password

--load: loads a contest configuration from either a directory in CLICS CDP format or from a

specified YAML file.

--skipini: ignores the pc2v9.ini file

--ini: specifies an override ini filename

--contestpassword: on the first server only, specifies the contest password.

--nogui: starts this server without a graphical user interface. See the section Non-GUI

Server Startup for more details.

PC2 Administrator’s Guide 104 http://pc2.ecs.csus.edu/

Using the –F option

The –F command line option will load command line options from an input text file. This

option is a security feature. Under most Unix systems the complete command line is listed when
using a ps or similar command revealing login ids and passwords. Using the -F option, login ids
and passwords can be stored in a text file. Note that the command line options are not limited to
login and password options; any command line option can be stored in the specified text file.

If this command line was used:

pc2server --nogui --contestpassword cpass --login site1 --password site1pass

One could alternatively use the -F option:

pc2server -F secure.txt

where the secure.txt file contains

Command line for non GUI server

--nogui
--contestpassword cpass
--login site1
--password site1pass

Blank lines and lines starting with # are ignored in the file (secure.txt).

The order that command line values are applied (highest precedent first) are:
1. specified -F option properties
2. specified on the command line
3. pc2v9.ini

PC2 Administrator’s Guide 105 http://pc2.ecs.csus.edu/

Appendix D – ICPC Import/Export Interfaces

D.1 Importing ICPC Registration Data

As mentioned earlier in this manual, PC2 was designed for supporting the International
Collegiate Programming Contest, including its local and Regional contests worldwide. The ICPC
maintains an online Contest Management System which is used by Regional Contest Directors
(RCDs) around the world to manage participation in the various ICPC Regional Contests. PC2
provides interfaces to import contest registration data from the ICPC CMS, and also to export contest
results back to the ICPC CMS.

To import ICPC registration data to PC2, the RCD must first log into the ICPC CMS and
download the “PC2 Initialization” zip file which is automatically created and updated as changes in
registration data occur.54 Once the PC2 Initialization data file is downloaded, it should be “unzipped”
at any convenient location.

Unzipping the PC2 Initialization data file will produce four separate files:
“PC2_Contest.tab”, containing details about the organization of the contest (such as the formal
name of the contest); “PC2_Site.tab”, containing data identifying the sites in the contest;
“PC2_Team.tab”, containing data about the teams that are registered in the contest; and
“_PC2_Team.tab”. This last file contains the same data as in the PC2_Team.tab file but has an
additional column which is initially filled with “null” and is intended to be filled in by the contest
administrator in order to specify the PC2 team number to be associated with each team.

Note that PC2 does not use the ICPC Team ID field for purposes of identifying a team. If the
contest administrator wishes to associate registered teams with PC2 accounts, the “_PC2_Team.tab”
file can be edited by adding the PC2 team number in the leftmost column. The specified team
numbers will then be assigned to the corresponding teams when the initialization file is loaded into
PC2.

PC2 expects quotation marks in the team data to be “quoted”. That is, if any field in the data
contains a quotation mark (), then (1) the entire field must be surrounded by an additional matching
set of quotation marks, and also (2) each quotation mark which is part of the data must be doubled.
Thus for example a team name like The TOPS Team should appear in the import data file as The
TOPS Team. If the PC2 Initialization file exported from the ICPC CMS contains data with
quotation marks, it may be necessary edit the data by hand (or load it into a program such as
Microsoft’s Excel and then save it) to insure that quotation marks are properly formed. If this is not
done prior to importing the data into PC2, you may see “format error” messages in the log file, and
the data containing the quotes will not be displayed properly.

54 The PC2 initialization data is contained in a file whose name on the ICPC web site is typically something like

“CI532.zip” – “Contest Information for contest number 532”. However, both the naming convention for the file, and
the exact location of the file on the web site, are outside the scope of (i.e., not controlled by) PC2.

PC2 Administrator’s Guide 106 http://pc2.ecs.csus.edu/

To load the ICPC import data into PC2, select the ICPC tab on the Configure Contest
tab on the main Administrator screen. This will produce the following screen:

The next step is to specify the sites which are to be imported into the system. Press the
“Import Sites” button on screen; this will cause PC2 to display a “file selection” dialog. Navigate
to the location where the import files were unzipped and select the PC2_Site.tab file. This will
load both the PC2_Site.tab file and the PC2_Contest.tab file. Next, press the “Import Accounts”
button, navigate to the directory containing the import files, and select the _PC2_Team.tab. Note:
all initialization “.tab” files must all reside in the same directory.

Selecting the PC2_Team.tab file will produce the Change Display Format screen, shown
below (this screen can also be invoked by pressing the Change Display Format button after
completing an account import). Each record in the ICPC PC2 Initialization data contains multiple
names associated with each team – the team name, the full name of the school, and a short version
of the school name. PC2 can be configured to use any one of these names, or a combination of them,
as the name to be displayed on the scoreboard; that is the purpose of the Change Display Format
screen.

PC2 Administrator’s Guide 107 http://pc2.ecs.csus.edu/

Select the desired Display Name Choice on the Change Display Format screen and then
press the Apply button. Apply changes the values displayed in the New Display Name column to
match the chosen option.

When the Change Display Format screen is invoked it displays only information for
accounts which have changed. During an initial import operation, all accounts will be displayed;
however, if the screen is subsequently invoked by pressing the Change Display Format button it
will initially be empty (since no accounts have changed). Click the “Include unchanged accounts”
checkbox to display all accounts.

Once the desired account configuration is set up, click the Update button to save the new
display names in the system.

PC2 Administrator’s Guide 108 http://pc2.ecs.csus.edu/

D.2 Exporting Contest Results

As described earlier in this manual, PC2 supports two different file formats for exporting
contest results: the newer results.tsv format and the older pc2export.dat format (retained for
backward compatibility). This section describes the layouts of each of these files

D.2.1 The results.tsv File

The format of the results.tsv file is as defined in the CLICS CCS specification (see
https://pc2.ecs.csus.edu/wiki/CLICS for details regarding CLICS). Results.tsv is text file consisting
of a single “version line” followed by a series of lines, one for each team in the contest, sorted in
rank order with alphabetical order on team name as tie breaker. Each line has tab separated fields as
defined below.

The first line has the following format:

results 1 (‘1’ represents the file format version number)

Then follow several lines (one per team) with tab-separated fields as follows:

TeamID – an integer; for uploads to ICPC CMS, this must be the team’s CMS “external ID”

Rank In Contest – an integer giving the rank this team earned

Award – a string listing any award(s) the team one; e.g. “Gold Medal”

Problems Solved – an integer giving the number of problems the team solved

TotalTime – an integer giving the total “time penalty” the team accrued

Time Of Last Submission – an integer giving the contest time at which the team’s
last successful submission took place

Group Winner – a string listing any Group (Region) in which the team finished first
(e.g., “North America”)

The results.tsv file is automatically generated when the contest is “finalized” (see the section
on Finalizing the Contest). It can also be generated manually by pushing the Refresh button on the
PC2 Scoreboard client.

D.2.2 The pc2export.dat File

Pressing the “Refresh” button on the scoreboard display causes the scoreboard to generate a
new pc2export.dat text file containing the contest results in the old form required by the ICPC

PC2 Administrator’s Guide 109 http://pc2.ecs.csus.edu/

CMS.55 This file is made up of a series of text records, one record for each team in the contest. Each
record contains a set of comma-separated fields. The fields in each record are:

1) ICPC Team ID (note: not the PC2 team number).

2) Rank in contest (this field is blank if the team falls in the “Honorable Mention” category
as defined by the scoring display algorithm for the ICPC World Finals; see the description
of the file wf.standings in the samps/web/xsl directory for details).

3) A non-negative integer giving the number of problems the team has solved.

4) A real number giving the total number of penalty points accrued by the team.

5) A real number giving the time of the last submission by the team, taking into account only
the problems which the team has solved (used as the ICPC World Finals tiebreaker
determination).

The records in the file are sorted by team rank based on problems solved and penalty points.
In particular, teams that fall into the “Honorable Mention” category as defined by the ICPC World
Finals results display algorithm will still appear in rank order in the file, as defined by number of
problems solved, penalty points accrued, and tie-breaking time of last submission.

The exported data file contains all the information necessary to update the ICPC Contest
Management System with the results of a contest. It is primarily intended to provide an automated
mechanism for Regional Contest Directors to post the results of Regional Contests. The export data
file can also be imported into any program that wishes to make use of the standings data.

 Note that if no “ICPC Import” operation was performed prior to invoking the “Export ICPC”
operation, then PC2 will have no record of the ICPC Team ID associated with each team. In this
case the “Team ID” value in field #1 in the exported file will be empty. This problem can be
circumvented in contests other than Regional Contests (that is, contests where there is no ICPC data
to import) by creating a local version of the “PC2_Team.tab” file, entering the appropriate PC2 team
account number in lieu of the ICPC Team ID. This will cause the “Export ICPC” operation to
generate a file containing all the data necessary to compute complete contest standings utilizing PC2
account numbers.

D.3 The PC2_Team File

The PC2_Team.tab file consists of text-based tab-delimited records, one record for each team
registered in the contest. The tab-delimited field contents of each record are as follows:

1) An integer giving the ICPC Team ID (note that this is not the same thing as the PC2
Team ID; see above).

2) An integer giving the ICPC Region ID (the “region” or “group” to which the team
belongs).

55 Actually, the export data file is automatically generated (updated) each time the contest standings change; pressing

the “Refresh” button simply displays a message showing its location.

PC2 Administrator’s Guide 110 http://pc2.ecs.csus.edu/

3) A single character indicating the Team’s “registration status” for the contest – typically
either ‘P’ (pending), ‘A’ (accepted), or ‘C’ (cancelled). PC2 ignores records
containing ‘C’ in this field.

4) A string giving the Team Name; for example, “The Top Coders”.

5) A string giving the full name of the Team’s school; for example, “California State
University, Sacramento”.

6) A string giving the Team’s school name in “short form”; for example, “CSUS”.

7) A string giving the Team’s school’s URL; for example, http://www.csus.edu.

8) A string giving the Team’s school’s country code (three letters); for example, “USA”.

9) A single character ‘Y’ or ‘N’ indicating whether the Team’s school has a graduate
program . PC2 ignores this field (but it must be present).

PC2 Administrator’s Guide 111 http://pc2.ecs.csus.edu/

Appendix E – Output Validators

E.1 Overview

PC2 allows the Contest Administrator to configure each problem so that it has associated
with it a validator whose purpose is to help automate the judging process. A “validator” is a program
which is given, as input, the output of the execution of a run (that is, the output of a program
submitted by a team).56 The validator program contains logic to make a determination, according to
some set of rules, regarding the correctness of the team’s output. A validator can also return the
result of its determination to PC2, making it possible to totally automate the judging process.57

A validator must contain program logic which directs how it determines correctness. This
logic could be hard-coded within the validator (in which case the validator is almost always problem-
specific), or could be more general (for example, it could perform “difference testing” between the
team’s program’s output and a Judge’s “answer file”).

PC2 utilizes a set of “interface conventions” defining both how information is passed from
PC2 to a validator and how the validator returns to PC2 an indication of what judgment it thinks
should be applied to the run. PC2 can be configured either to accept the validator judgment as final
(called “fully automated” or “computer” judging), or it can be configured such that the validator
result is displayed to a human judge as a “recommendation” (in which case the human judge makes
the determination of whether to accept the validator recommendation or instead to assign some other
judgment to the team’s submission).

E.2 Validator Selection

By default there is no validator attached to (associated with) a contest problem in PC2.
Validators can be attached to a problem by the Contest Administrator by using the Output Validator
tab on the Edit Problem dialog. This displays the Validator Configuration screen, shown below.
When the Contest Administrator configures a problem to use a validator, then when a judge
(automated or human) executes a team program the specified validator will automatically be invoked
as soon as the team program completes execution.

The Contest Administrator can choose one of three options for attaching an output validator
to a contest problem: the simple “built-in PC2 Validator”; an implementation of the more robust
“CLICS Validator”; or a custom (user-supplied) validator.

56 The CLICS CCS specification actually defines two types of validators: input validators, which examine the judge’s

input data to insure the data complies with the specifications given in the contest problem statement, and output
validators, which examine the output of a team’s program for correctness. PC2 supports both types of validators.
However, since output validators are much more common, the term “validator” by itself is generally interpreted as
referring to output validators, and that is the how the stand-alone term is interpreted in PC2 documentation. This
Appendix is about output validators; see the separate Appendix on Input Validators for further information on that
type of validator.

57 See the section Assigning Auto Judging to Judge modules in the chapter on Interactive Contest Configuration
for additional information on setting up automated judging.

PC2 Administrator’s Guide 112 http://pc2.ecs.csus.edu/

The Contest Administrator can choose whether or not to display the validator result to the
(human) judge. Checking the box “Show Validation To Judges (SVTJ)” when configuring a
validator will cause the response returned by the validator to appear on the Judge’s display when the
run finishes executing. If the checkbox is unchecked the validator result will not be visible to the
judge.

The “Report” button pops up a window displaying the configuration of the current problem
(not just the Validator portion), and allows saving the report to a file.

E.2.1 The Simple Built-in PC2 Validator

The built-in PC2 validator is essentially a simple version of the Unix “diff” program, with
the ability to choose some options. The choices include:

1. Perform a straight “diff” between the team’s output and the judge’s answer file

2. Perform a diff, but ignore any whitespace at the beginning of the team’s output

3. Perform a diff, but ignore any leading whitespace on lines of the team’s output

4. Perform a diff, but ignore all whitespace on lines in the team’s output

5. Ignore empty lines in the team’s output

The above choices are mutually exclusive; there is no way to combine the options (see the
term “simple”, above). The simple PC2 validator also separately supports the ability to specify

PC2 Administrator’s Guide 113 http://pc2.ecs.csus.edu/

whether the validator should or should not ignore character case (upper vs. lower) in the team’s
output, by checking the corresponding box shown on the above screen.

E.2.2 The CLICS Validator

PC2 supports an implementation of the default validator defined by the CLICS CCS
specification, found at https://clics.ecs.baylor.edu/index.php/Problem_format#Output_Validators.
This is the validator typically used at the ICPC World Finals.

The following screen shows the options available when the CLICS Validator implementation
is selected:

Checking the “Case-sensitive” checkbox causes the PC2 CLICS Validator to reject
submissions which do not match the judge’s answer in character case (if the box is unchecked, the
validator will judge a submission as “correct” if the only differences are in character case).

Checking the “Space-sensitive” checkbox causes the validator to require that spacing in the
team’s output exactly match that of the judge’s answer; if the box is unchecked then the validator
essentially “tokenizes” the team’s output, ignoring whitespace, and compares the resulting tokens
with those found in the judge’s answer file.

PC2 Administrator’s Guide 114 http://pc2.ecs.csus.edu/

Checking the “Float relative tolerance” checkbox allows the Contest Administrator to specify
a relative tolerance for floating point values in the team’s output; if a floating point value in the
team’s output is within the specified relative tolerance of the corresponding value in the judge’s
answer, the team value is accepted as correct. The relative tolerance value is a percentage,
represented as a decimal value between zero and one with “1” representing 100%; for example,
specifying a float relative tolerance of 0.1 indicates that the team’s output will be accepted if it is
within 10% of the judge’s answer.

Checking the “Float absolute tolerance” checkbox allows the Contest Administrator to
specify an absolute tolerance for floating point values in the team’s output; if a floating point value
in the team’s output is within the specified absolute tolerance of the corresponding value in the
judge’s answer, the team value is accepted as correct. For example, specifying a float absolute
tolerance of 2 indicates that the team’s output will be accepted if it is within 2 units of the judge’s
answer.

The interpretation of combining float absolute and relative tolerances is that if both are
specified, then the team’s output value is accepted as correct if it lies either within the specified float
absolute tolerance or within the specified float relative tolerance. (This matches the CLICS Default
Validator specification).

E.2.3 Custom (User-supplied) Validators

The third validator option is to use a separate external program as the validator.58 In order
to use this option the Contest Administrator must specify three things:

1. The full path to the external validator program file (the executable program, script, etc.)

2. The command line which is used to invoke the external validator program, and

3. An indication of the interface convention used by the external validator program (that is,
the specification of how the validator interfaces with PC2 both to get its input and to return
its output).

The following screen shows a contest problem being configured to use a custom validator.

58 Here, “program” is used in the general sense; a user-supplied custom validator could be a user-written script, an

executable file generated by externally compiling a program, an executable JAR file, an invocation of an interpreter,
or a combination of these. The only requirements are that the validator be invokable via a command line and that the
validator conforms to one of the supported PC2 “validator interface conventions” (see the following sections).

PC2 Administrator’s Guide 115 http://pc2.ecs.csus.edu/

In the example shown above the validator program is an executable file named
“MyValidator.exe” which has been written to use the “CLICS Validator Interface” convention and
is invoked using the following command line:

{:validator} {:infile} {:ansfile} {:feedbackdir} myOpt=99

“myOpt=99” is an argument that the MyValidator.exe program is expected to accept and
process (along with the substituted values of the other command parameters, described below).

The Choose… button can be used to navigate to and select the program to be used as the
custom validator; it will automatically insert the full path to the selected program file into the
Validator program textbox. If the program name is instead typed directly into the Validator program
textbox, be sure to include the full path to the program as part of the program name. See the
following sections for explanations of validator interfaces and of the fields in the above command.

PC2 Administrator’s Guide 116 http://pc2.ecs.csus.edu/

E.3 Custom Validator Invocation Command Lines

The Contest Administrator enters the command to be used by PC2 to invoke the validator
into the Validator Command Line textbox. Following the execution of the team’s program on each
judge’s data set configured in the contest problem, the system immediately invokes the specified
validator command just as if the command had been typed at a console window on the host platform.

The Validator Command can include parameter substitutions similar to those allowed when
configuring languages. As when defining contest languages, parameter substitutions are indicated
by a set of matching curly braces with a colon as the first character and containing a substitution
keyword; for example: {:infile} The following table shows the substitutions which will be applied
to the command line by PC2 prior to invoking the validator:

Keyword Meaning

validator Represents the file name given in the Validator Program box.

infile

Represents the problem data input file as configured in the
problem. (If the problem was configured with multiple input
data files then this represents the specific data file used during
the execution of the team program which produced the output to
be validated.)

outfile Represents the output sent to stdout by the team program when
it was executed by the judge using the current input data file.

ansfile Represents the judge’s answer file corresponding to the current
input data file, as configured in problem.

resfile
Specifies the name of the file into which a validator is expected
to place an XML representation of the validator result judgment
(used with PC2 Interface Standard validators; see below).

feedbackDir
Specifies the name of a directory into which the validator may
write feedback information (used with CLICS Interface Standard
validators; see below).

Note that while the example in the previous section uses an existing program (the program
MyValidator.exe) as the “validator program”, it is not a requirement that the “validator program”
actually be an executable program, nor is it a requirement that the item listed in the Validator program
field actually be what gets invoked via the Validator Command Line. As an example, the “validator
program” file might be a text file containing a set of “rules” describing how to determine the
correctness of a team’s output, and a completely separate program could be invoked via the Validator
Command Line entry, perhaps passing the “validator program” file as a parameter.59

59 It is arguable that a better name for the label “Validator Program” would have been “Validator File”, since it does not

have to be a program…

PC2 Administrator’s Guide 117 http://pc2.ecs.csus.edu/

For example, suppose a contest problem requires teams to write a program to generate output
which conformed to a set of lexical rules. If there existed a program named “analyze” which
performed lexical analysis of the contents of a file according to a set of rules specified in another
file, then the Contest Administrator might create an appropriate set of rules (the rules to which the
team program’s output must conform) in a file named rules.dat, select rules.dat as the “Validator
Program” file, and then specify the following as the Validator Command Line entry:

analyze {:validator} {:outfile}

This would invoke analyze as the program to be executed during the validation step,
passing it rules.dat and the team output file as input. (What analyze would do with this is left as
an exercise for the reader – but see the following section.)

One special case applies to the invocation of validators: if the name of the Validator program
ends with “.jar”, PC2 assumes it represents a “runnable JAR file” – that is, a JAR file containing a
Manifest entry listing the main method in the JAR – and the system automatically prepends “java
–jar ” to the front of the command, causing the JAR file to be properly executed. In all other cases
the system simply invokes the specified Validator program as if the Validator Command Line had
been typed at a console.

E.4 Custom Validator Interfaces

In order to support the use of custom validators in a Contest Control System (CCS), it is
necessary to define a set of conventions for interfacing such validators to the CCS. This requires
two things: a standard mechanism for passing data from the CCS to the validator, and a standard
mechanism for passing validator results back to the CCS. Because a validator is a problem-specific
entity (not a contest-specific or Contest Control System-specific entity), ideally these standards
should be uniform and general enough that a conforming validator (and its corresponding contest
problem) could also be used in conjunction with contest control systems other than PC2.

There are two such validator interface standards in common use today.60 The first is referred
to as the PC2 Validator Interface Standard.61 This standard was developed under the auspices of
the ICPC by the PC2 development team, working in conjunction with a number of other Contest
Control System development teams. This standard is supported by PC2 (going all the way back to
Version 7) as well as by other Contest Control Systems.

The second, newer validator interface standard was defined under the auspices of CLICS
(see https://clics.ecs.baylor.edu/index.php/Problem_format#Validators on the CLICS Wiki as well
as https://pc2.ecs.csus.edu/wiki/Validator#CLICS_Output_Validator on the PC2 Wiki).

The current version of PC2 supports both the older version of the validator interface standard
as well as the newer CLICS validator standard. Both standards specify two interfaces: the interface
used by the contest control system to invoke the validator program, and the interface used by the
validator program to pass results back to the contest control system. When the Contest Administrator
selects a custom validator, the radio buttons on the Validator Configuration screen (above) must be

60 As someone once said, “Standards are a good thing – we should have lots of them.” Case in point.
61 http://www.ecs.csus.edu/pc2/doc/valistandard.html

PC2 Administrator’s Guide 118 http://pc2.ecs.csus.edu/

used to indicate which standard the custom validator uses (and obviously, the custom validator code
must be written so that it conforms to the specified standard).

The following sections give a description of the interfaces defined by the two standards.
Since PC2 supports both standards, any validator written to comply with either of these interfaces
can be used as a custom validator for a problem in PC2.

One important thing to be aware of when creating a custom validator is that, regardless of
which validator interface is used, PC2 always arranges that the standard output and standard error
channels of the validator are captured and made available to the judge following the
execution/validation of a team’s program. This can be particularly useful when trying to debug a
custom validator, or when trying to find system configuration errors which produce unexpected
validation results. For example, if a custom validator writes an error message to standard error when
it receives incorrect or insufficient parameters, it will be easy to see this by looking at the standard
error channel results on the judge. This in turn might lead to making a correction in the Validator
Command Line configured for the problem. See the separate PC2 V9 Judge’s Guide for information
on how to examine the Validator standard output and standard error output.

E.4.1 Using the PC2 Validator Interface

E.4.1.1 PC2 Validator Input Interface

 The PC2 Validator Interface specifies that the contest control system is responsible for
passing at least four command line arguments to the validator, as follows:

argument1: a string specifying the name of the input data file which was used to test
the program whose results are being validated.

argument2: a string specifying the name of the output file which was produced by the

program being validated when it was run using the data file named in
parameter1 (that is, the name of the file containing the output to be 'validated').

argument3: a string specifying the name of an arbitrary "answer file" which acts as

input to the validator program. The answer file may, but is not necessarily
required to, contain the "correct answer" for the problem. For example, it might
contain the output which was produced by a "Judge's Solution" for the problem
when run with the data file named in parameter1 as input. Alternatively, the
"answer file" might contain information, in arbitrary format, which instructs the
validator in some way about how to accomplish its task.

argument4: a string which specifies the name of the "result file" which the validator

must produce. The content of the result file produced by the validator is defined
in the following section.

The requirements for passing arguments to a validator can be met by the Contest

Administrator in PC2 through the use respectively of the {:infile}, {:outfile}, {:ansfile}, and {:resfile}
command substitution parameters in the Validator Command Line; PC2 will automatically insert the

PC2 Administrator’s Guide 119 http://pc2.ecs.csus.edu/

appropriate values for the problem when the validator is invoked. Also, as required by the standard,
PC2 arranges that the data file, program output file, and the answer file are in the current directory
when the validator program is run. These conditions taken together specify how a custom user-
written validator program should expect to be invoked by PC2 when using the PC2 Validator
Interface Standard.

The PC2 Validator Interface standard also specifies that the contest control system may pass

additional command line parameters to a validator, as long as the first four command line parameters
are specified as listed above, and further specifies that the interpretation of any such parameters is
up to the validator. The Contest Administrator in PC2 can pass arbitrary additional parameters to
the validator by including them in the Validator Command Line after the four required parameters.
An example is shown in the previous section, where the additional parameters “MyOption=99” is
passed to the validator (this is a specific example; any set of additional arguments can be passed on
the command line as long as they are expected by the validator program).

E.4.1.2 PC2 Validator Result Interface

 The PC2 Validator Interface standard requires that the validator result be returned in the
“result file” whose name is specified by parameter4 (above), and that the contents of the result file
must be a valid “XML Document”. This means that it must start with a valid XML declaration62,
such as

<?xml version="1.0"?>

The root element of the XML document must be of the form

<result outcome = "string1"> string2 </result>

The tag name “result” is fixed and required by the standard, as is the attribute name

“outcome”.

“string1” is an “outcome string” defining the result (outcome) which the validator is
reporting to the contest control system. The standard specifies that if the value of “string1” is
“accepted” (or any case-variation of that word), the validator is indicating that the program output
file “passed” the validation test(s). If “string1” contains any value other than a form of the word
“accepted”, the standard specifies that the validator is indicating that the program output file “failed”
the validation test(s).

In PC2, the appearance of any form of the word “accepted” in the “string1” attribute of the
result element in the result file causes PC2 to assign a recommendation of “YES” to the run being
executed. In addition, any form of the word “Yes” also causes PC2 to assign a recommendation of
“YES” to the run being executed (this is an extension to the standard). Recommendations are
displayed to the judge if the SVTJ checkbox has been checked when the validator is configured with
the contest problem.

62 Strictly speaking, the XML standard does not require that a document contain an XML header to be a valid XML

document. However, the current PC2 implementation expects a validator result file to have an XML header.

PC2 Administrator’s Guide 120 http://pc2.ecs.csus.edu/

If the value of “string1” returned by the validator is not some form of the word “accepted”
or “yes”, then PC2 compares the actual string value to the set of “judgment messages” currently
defined in the system. If “string1” matches one of the currently-defined judgment messages, then
PC2 assigns that message as the recommendation for the run being executed; otherwise, it assigns a
recommendation of “Undetermined” to the run.

The set of judgment messages recognized by PC2 is defined on the Judgments tab of the
Configure Contest tab on the main Administrator screen. The default set of judgment messages is
given in the following list:

Yes
No - Compilation Error
No - Run-time Error
No - Time-limit Exceeded
No - Wrong Answer
No - Excessive Output
No - Output Format Error
No - Other - Contact Staff

See the section on Contest Judgments for information on adding to or editing the existing
judgment messages.

“string2” in the XML file returned by a validator is an arbitrary message string being returned
from the validator to the contest control system. The standard specifies that the interpretation of this
string is up to the contest control system. PC2 does not use the “string2” parameter from the result
file.

E.4.1.3 PC2 Extensions

The PC2 Validator Interface standard specifies that the XML <result> element produced
by the validator may include other attributes in addition to the “outcome” attribute, and may also
include additional (nested) elements; it also specifies that the interpretation of any such additional
attributes and/or elements is up to the contest control system. Such additional attributes can be used
to implement a variety of features.

 PC2 makes use of additional attributes to implement a form of security. Specifically, it
expects the validator to define an additional attribute named “security” and to return in that attribute
the name of the result file. That is, PC2 expects the XML result file to look like:

<?xml version="1.0"?>
<result outcome="string1" security="resfile"> string2 </result>

where “resfile” is the value which was passed to the validator as the name of the file into
which the results should be placed (and where string1 and string2 are as described above).

Each time PC2 invokes a validator it generates a unique random name for the result file.
When the validator returns, PC2 examines the contents of the result file and verifies that the security
attribute value matches the file name. Since a user (team) program cannot know ahead of time what
result file name PC2 will generate, it is not possible for a user program to generate a “fake” result
file which somehow gets used in place of one generated by the validator. While this is not a complete

PC2 Administrator’s Guide 121 http://pc2.ecs.csus.edu/

guarantee of security, it does make it much more difficult for a user program to circumvent the
operation of the validator.

E.5.2 Using the CLICS Validator Interface

E.5.2.1 CLICS Validator Input Interface

The CLICS Validator Interface standard specifies that the Contest Control System will
invoke the validator by passing it at least three command line arguments, in order:

argument1: a string specifying the name of the input data file which was used to test the
program whose results are being validated.

argument2: a string specifying the name of an arbitrary “answer file” which acts as input
to the validator program. The answer file may, but is not necessarily required to,
contain the “correct answer” for the problem. For example, it might contain the output
which was produced by a judge’s solution for the problem when run with input file as
input. Alternatively, the “answer file” might contain information, in arbitrary format,
which instructs the validator in some way about how to accomplish its task. The
meaning of the contents of the answer file is not defined by the standard.

argument3: a string which specifies the name of a “feedback directory” in which the
validator can produce “feedback files” in order to report additional information on the
validation of the output file. The feedbackdir must end with a path separator (typically
'/' or '\' depending on operating system), so that simply appending a filename to
feedbackdir gives the path to a file in the feedback directory.

In addition, the standard specifies that the team’s output (the output file which was produced
by the program being validated) must be presented to the validator's standard input channel; PC2
arranges that this is true for any custom validator which is specified as using the CLICS Validator
Interface standard.

The standard also specifies that the two files named by the input and judge answer
arguments (arguments 1 and 2) must exist (though they are allowed to be empty) and that the
validator program must be allowed to open them for reading. The directory pointed to by
feedbackdir (argument 3) must also exist.

A sample Validator Command Line for invoking a custom validator using a CLICs interface
in PC2 might therefore look like the following:

{:validator} {:infile} {:ansfile} {:feedbackdir}

This command line will invoke the specified Validator program, passing it the current input
data file name, the current judge’s answer file name, and the name of a feedback directory. Note that
when PC2 invokes a custom validator using the CLICS Validator interface, the system automatically
creates a new, randomly-named directory for use as the “feedback directory”. This is done as a
security measure; it prevents a team submission from using a priori knowledge about where
“validator feedback” is to be written and attempting to somehow overwrite it. The Validator

PC2 Administrator’s Guide 122 http://pc2.ecs.csus.edu/

program should use the specified feedback directory name as the directory where it writes any
feedback files (see the following section for information on feedback files).

There is nothing in the CLICS Validator standard which prohibits additional command line
arguments being passed to a CLICS validator. For example, a custom validator could be written to
examine the command line for additional parameters (following the feedbackDir (3rd) argument)
such as “case-sensitive”, “space-sensitive”, “float-tolerance”, etc., and use these
additional parameters to direct the validation process. Any such additional parameters would be
added to the Validator Command Line specified in the Use Custom Validator portion of the Validator
Configuration screen; so for example the Validator Command Line might instead look like:

{:validator} {:infile} {:ansfile} {:feedbackdir} case-sensitive

The interpretation of any additional parameters, as with the interpretation of the required
parameters, is up to the code comprising the custom validator.

E.5.2.2 CLICS Validator Result Interface

The CLICS Validator Interface standard specifies that a validator program is required to
report its judgment by exiting with specific exit codes:

 If the output is a correct output for the input file (i.e., the submission that produced
the output is to be Accepted), the validator exits with exit code 42.

 If the output is incorrect (i.e., the submission that produced the output is to be judged
as Wrong Answer), the validator exits with exit code 43.

The standard also specifies that “Any other exit code (including 0!) indicates that the
validator did not operate properly, and the contest control system invoking the validator must take
measures to report this to contest personnel.”

PC2 supports this interface for custom validators configured to use the CLICS Standard. That
is, it expects the custom validator to exit with the specified exit codes based on the validation results,
and uses the exit codes to determine what judgement to apply to the submission.

The CLICS validator interface standard also specifies that the validator may (but is not
required to) report more information back to the CCS than just the accept/reject verdict implied by
the exit code. In particular, the validator may write arbitrary files into the feedback directory for
purposes of passing additional information to the CCS.

PC2 supports the ability of a custom validator to provide additional feedback information by
examining the feedback directory for two files. If it finds a file whose name is “judgement.txt”, it
assumes that this file contains a line describing the judgement to be applied to the submission. For
example, a judgement.txt file might contain a string such as “accepted” or “yes”, or instead might
contain a string such as “wrong answer” or “output format error” or “spacing error”. This judgement
information can be used by the judge to determine why a submission was rejected by the validator.

PC2 Administrator’s Guide 123 http://pc2.ecs.csus.edu/

PC2 arranges that the contents of the judgement.txt file (if any) is displayed as the “Validator
Recommends” answer. Note however that since the contents of the judgement.txt file are arbitrary
and are defined by the external validator, there is no way for PC2 to automatically know whether the
contents of a given judgement.txt file represents a successful or a rejected run; it uses the validator
exit code to determine this.

PC2 also supports the ability of a custom validator to provide more detailed feedback
information by examining the feedback directory for a file whose name is “judgementdetails.txt”. If
it finds a file matching this name, it reads the contents and also displays it for the judge. For example,
a judgementdetails.txt file might contain a string such as “Mismatch at line 8: judge token was 5.5,
team token was 4.9”. This kind of additional information can be used by the judge to further
determine why a submission was rejected by the validator.

PC2 Administrator’s Guide 124 http://pc2.ecs.csus.edu/

Appendix F – Language Definitions

As described earlier in this manual, PC2 must be given a “language definition” for each
language to be used in the contest (that is, for each tool which teams can use to write and submit
programs). The language definition consists of four distinct text strings: the “Display Name”, the
“Compile Command Line”, the “Executable Filename” specification, and the “Program Execution
Command Line”.

In order to help in understanding how such language definitions work (and so that you will
be better able to develop your own language definitions), it is useful to understand what it is that
PC2 does with a language definition. Language definitions are used by PC2 in two circumstances:
when a Team invokes a TEST RUN operation, and when a Judge or an Admin invokes an EXECUTE
operation. The following algorithm describes the sequence of steps which PC2 follows when either
the TEST RUN button on the Team, or the EXECUTE button on the Judge or Admin is pressed.

1. The entire contents of the “execute”63 directory (beneath the $PC2HOME directory)
are deleted. If something prohibits this clearing, the system stops and displays a
warning message, and all remaining steps are skipped.

2. The submitted files are copied to the execute directory.

3. If the file whose name is specified as the “Executable Filename” in the language
definition exists in the execute directory, it is deleted. This prohibits a team from
submitting an executable file (or more correctly, they can submit it but it will never
be executed).

4. The command specified as the “Compile Command” in the language definition is
executed, using appropriate command parameter substitutions as defined earlier in
this manual.

5. PC2 checks for the existence in the execute directory of a file whose name matches
the specified “Executable Filename”. If this file exists, it must have been created by
the execution of the “Compile Command”. (This is how PC2 determines whether
compilation was successful.)

6. If the specified “Executable Filename” exists (hence, the “Compile Command” was
successful), then the following operations are performed:

a. The data file associated with the problem (if any) is copied into the
execute directory.

63 The term “execute directory” refers to the directory which is current when a submission is executed and in which all

execution operations (e.g. compiling, linking, execution) occur. In PC2 Version 9 the execute directory name is based
on the logged in user. For example, the execute directory for Team 3 at Site 1 is named “executesite1team3”; the
execute directory for Judge 3 at Site 2 is named “executesite2judge3”, etc.

PC2 Administrator’s Guide 125 http://pc2.ecs.csus.edu/

b. The command specified as the “Program Execution Command Line”
is executed, using appropriate command parameter substitutions as
defined earlier in this manual.

c. If this is an EXECUTE operation on a Judge or Admin (as opposed to
a TEST RUN on a Team), then if there was a “Validator” associated
with the problem, then the following operations are performed:

i. The “answer file” associated with the problem (if any) is
copied into the execute directory.

ii. The command specified as the “Validator Command Line”
is executed, using validator command parameter
substitutions as defined earlier in this manual (see the
Appendix on Validators).

iii. If “Show Validator Result To Judge” (SVTJ) was checked
when the Validator was associated with the problem, PC2
reads the result file created by the Validator (see the
Appendix on Validators) and displays the appropriate
result for the Judge.

Some examples of PC2 language definitions which have been used in past contests and were
known to work in those environments are shown below. Each definition consists of four lines,
corresponding to the four text field entries required on the Edit Language screen when defining a
new language under the main Administrator screen.

No guarantee is made that these definitions will work in your environment, nor that they will
not become obsolete due to changes made by the various language tool vendors. All we can tell you
is that all of these language definitions have been used successfully in past contests. Use them at
your own risk.

Language: Java
 Java
 javac {:mainfile}
 {:basename}.class
 java {:basename}
 Java

Language: GNU C++
 GNU C++ (Unix / Windows)
 g++ -lm -o {:basename}.exe {:mainfile}
 {:basename}.exe
 .\{:basename}.exe
 GNU C++

PC2 Administrator’s Guide 126 http://pc2.ecs.csus.edu/

Language: GNU C
 GNU C (Unix / Windows)
 gcc -lm -o {:basename}.exe {:mainfile}
 {:basename}.exe
 .\{:basename}.exe
 GNU C

Language: Perl
 Perl
 compilePerl {:mainfile}
 OK
 perl {:mainfile}
 Perl

Language: Microsoft C++
 Microsoft C++
 cl.exe {:mainfile}
 {:basename}.exe
 .\{:basename}.exe
 Microsoft C++

Language: Kylix Delphi
 Kylix Delphi
 dcc {:mainfile}
 {:basename}
 .\{:basename}
 Kylix Delphi

Language: Kylix C++
 Kylix C++
 bc++ -A {:mainfile}
 {:basename}
 .\{:basename}
 Kylix C++

Language: Free Pascal
 Free Pascal
 fpc {:mainfile}
 {:basename}
 .\{:basename}
 Free Pascal

One of the ramifications of the sequence of language-handling steps described above is that
a team cannot submit a program whose file name is the same as the “Executable Filename” specified
in the corresponding language definition. For example, if the Contest Administrator configured a
language by saying that the result of a compile operation for the language was to produce an
executable file whose name was always “a.out”, then if a team submitted a source code program
in a file named “a.out”, then the source code program file would get deleted (step 3) prior to the
compile step.

Normally this difficulty is eliminated through the use of command parameter substitutions;
the Contest Administrator would not normally specify “a.out” as the expected executable file to be

PC2 Administrator’s Guide 127 http://pc2.ecs.csus.edu/

generated by the compilation steps, but rather would use a specification such as
“{:basename}.out”, and further a team would normally submit source code in a file named, e.g.
“a.c” rather than “a.out”.

However, there is one scenario under which the mechanics of language handling by PC2 can
cause difficulties (or at least, confusion). This is the case of purely interpreted languages, such as
Perl or shell-script. In these cases there is no “compilation” step which is expected to generate an
“executable” file; the “source file” is effectively the same as the “executable” file (in the sense that
the source file undergoes no transformation prior to invoking “execution”, since “execution”
involves running an interpreter against the original source program).

For example, in the case of Perl, the Contest Administrator might attempt to configure the
language definition as:

 Perl
 /bin/perl -c {:mainfile}
 {:mainfile}
 /bin/perl {:mainfile}

This definition says that the language Display Name is “Perl”; that the “Compile Command”
invokes /bin/perl (the Perl interpreter) with the “-c” (check syntax) argument and the submitted
file, that the result of “compilation” is to produce an “executable” file whose name is the same as
the submitted file, and that following the “compilation” step PC2 should check for the existence of
the submitted file and if present it should invoke /bin/perl again, this time executing the Perl
commands in the submitted file.

However, this language definition will not work, because of the steps which PC2 follows: it
will delete the submitted source code (.pl) file prior to invoking the compilation command. Again,
the reason for this is that it checks for the existence of the specified “executable file” after the
compilation step, and assumes that if the file exists then the compilation was successful. Thus if a
team submitted a source file named “myFile.pl”, since the submitted file is the “executable file”
which would be input to the Perl interpreter, the “executable filename” (after command parameter
substitution) would also be “myFile.pl” – but the file would have been deleted.

 It is still possible to use such languages with PC2. The trick is to create a separate “script”
file which acts as the “Compile Command” and has the effect of creating a separate file which has
the same name as that specified for the “Executable Filename” and which PC2 can test for after
compilation and prior to invoking program execution.

For example, suppose the Contest Administrator creates a shell script file named
“compilePerl” with the following contents (the example presumes a Unix-like environment, but a
similar approach can be taken in a Windows system):

#!/bin/csh
perl –c $*
if ($? == 0) then
 touch OK
endif

PC2 Administrator’s Guide 128 http://pc2.ecs.csus.edu/

This script basically says: run the “C-Shell” interpreter (line 1); have it execute the perl
interpreter and perform a syntax check (-c) on the arguments passed to the script ($*) (line 2); check
the system “status variable” ($?) and if it is zero (meaning no errors occurred) (line 3) then create a
file named “OK” (line 4).

With this compilePerl script accessible via the PATH variable, the following language
definition will allow a Perl program to be submitted and processed by PC2 :

 Perl
 compilePerl {:mainfile}
 OK
 perl {:mainfile}

This language definition will invoke the compilePerl script telling it to syntax-check the
submitted program file, then if the file “OK” exists (which will only happen if the Perl syntax-check
was successful) it will invoke the Perl interpreter to execute the submitted program. Note that while
this example is for Perl, other languages such as Bourne Shell (and other shells), Python, Ruby, and
‘awk’ can also use a similar solution.

The above example should provide some insight into the types of operations which the
Contest Administrator can invoke from PC2 . For example, it is possible to create a script file which
is invoked for the “Program Execution Command” and does any desired operation, such as copying
a data file into the execute directory prior to running the intended program. Basically any desired
operation can be performed at either the “compile” or “execute” step, as long as one has a clear
understanding of the PC2 language processing algorithm described above. This organization of
language processing gives a great deal of flexibility to the Contest Administrator.

PC2 Administrator’s Guide 129 http://pc2.ecs.csus.edu/

Appendix G – Using the PC2 API

While the client interfaces (Admin, Judge, Team, and Board) in PC2 are intended to be as
general as possible, there may be situations where users would like a client to operate differently.
For example, a user may wish to create a scoreboard that uses a different scoring algorithm, or to
create a different sort of contest system interface for Teams. To support this, PC2 provides a
mechanism for users to create their own “custom clients” which interface with the rest of the PC2
system.

The PC2 API Java doc is in the distribution under doc/api/index.html. In the API Java
doc there are code snippets which show how to use the API.

To use the API you must add the pc2.jar in the CLASSPATH (or build path).

 Use the ServerConnection class to connect to the PC2 server. Here is the code snippet from
the ServerConnection Java doc that shows how to connect to the server and access the contest data.

 String login = "team4";

 String password = "team4";

 try {

 ServerConnection serverConnection = new ServerConnection();

 IContest contest = serverConnection.login(login, password);

 //... code here to invoke methods in "contest";

 serverConnection.logoff();

 } catch (LoginFailureException e) {

 System.out.println("Could not login because " + e.getMessage());

 }

After a successful connection, the IContest instance can be used to access the contest
data/information.

PC2 Administrator’s Guide 130 http://pc2.ecs.csus.edu/

Appendix H – Troubleshooting / Getting Help

Before getting help from the PC2 Team

 There are a number of documents and references that contain information about using PC2,
take the time and search these references before sending an email to the PC2 team.

1. Search this document for an answer

2. Search the PC2 Wiki or use Google to search for answers

http://pc2.ecs.csus.edu/wiki/Main_Page

3. Search the on-line FAQ

http://pc2.ecs.csus.edu/doc/faq/

4. Search PC2 Bugzilla

http://pc2.ecs.csus.edu/bugzilla/

Getting help from the PC2 Team

 If you can not find an answer to your question, send the PC2 team an email at
pc2@ecs.csus.edu.

 If you have attempted to use the PC2 system and are having a problem, please email us a
pc2zip file. This file is created by using the pc2zip script to create a special .zip file in the archive
directory.

PC2 Administrator’s Guide 131 http://pc2.ecs.csus.edu/

Appendix I – PC2 Distribution Contents

This following tables describe the contents of a PC2 software distribution. Each distribution
contains a single (base) directory which contains these directories and files.

Directories

Directory Name Contains
bin scripts to start PC2 modules
data XSL Stylesheets and other data files
doc API and user documentation
lib PC2 Java library (jars)
projects PC2-related projects (e.g. WTI web team)
samps sample files
samps/contests sample contests, with YAML descriptions
samps/data/xsl XSL descriptions for PC2 scoreboards et.al.
samps/scripts compile and other scripts
samps/src Samples in C, C++, Java, etc.
samps/web web resources and scripts
samps/web/xsl samples for group XSL for HTML

Files

Filename Description
README Late breaking and important info
VERSION Version information
pc2v9.ini Example PC2 V9 initialization file
pc2.ico Default icon for PC2 modules

PC2 Administrator’s Guide 132 http://pc2.ecs.csus.edu/

Appendix J – Log files

Log files are stored under the logs/ directory. In Version 9.3 and above, server log files are also
stored under profiles/<ProfileID>/logs.

 There are 4 different log file types:

1. startup log files – logging information before a module is logged in

2. module log files – logging information for a logged in module/client, typically these are
the files to check for errors when running PC2

3. evaluations/judgments log – on server only, one line per judgment, see
http://pc2.ecs.csus.edu/wiki/Evals.log for more details.

4. security log files – logging security issues when they happen

PC2 Administrator’s Guide 133 http://pc2.ecs.csus.edu/

Appendix K – Reports Program

The pc2report program can be used to produce stand-alone reports about the state of the
system. This program must be run on the PC2 server machine (i.e., the machine on which the
pc2server program is run). Each report generated by pc2report is identical in output content and
form to the reports created using the Admin Report Tab.

The following examples use the contest password ‘newpass’; replace ‘newpass’ with the

contest password entered when the PC2 server was initially started. 64

Show Fastest Solution Summary report

$ pc2report --contestPassword newpass 'Fastest Solution Summary'

Show Runs report

$ pc2report --contestPassword newpass Runs

Show Runs report, use the report number (15) instead of spelling out report name

$ pc2report --contestPassword newpass 15

Usage
Usage: [options] reportName|## [[reportName|##][...]]

--profile name - profile name, default uses current profile. name may be a ##
from --listp listing
--contestPassword padd - password needed to decrypt pc2 data
--list - list names of reports (and the report numbers)
--dir name - alternate base directory name, by default uses profile dir
name
--site ## - specify the site number
--listp - list all profile names with numbers
--noProfile - do not use profile directory use pre version 9.2 location

reportName - name of report to print (or report number)
- number of report to print (numbers found using --list)

$ pc2reports --listp
1 - Id: Contest-1526060434834405723 description: Real Contest name: Contest
2 - Id: Contest 3--613094433664018852 description: Real Contest 3 name: Contest
3

Default name : Contest
 Profile ID : Contest-1526060434834405723
 Description : Real Contest
 Path : profiles\Pdf812e23-4234-46ee-ad3c-4011c8cb885e

64 See the earlier note regarding the use of the –F option to avoid putting plain-text passwords on the command line.

PC2 Administrator’s Guide 134 http://pc2.ecs.csus.edu/

Each of these will print the same report:

$ pc2report --contestPassword newpass --profile Contest 3--613094433664018852
'Fastest Solution Summary'
$ pc2report --contestPassword newpass --profile 2 'Fastest Solution Summary'
$ pc2report --contestPassword newpass --profile Contest 3--613094433664018852 9
$ pc2report --contestPassword newpass --profile 2 9

Precedence for directory: --dir, --profile, then default profile dir

Version 9.3 20140802 (Saturday, August 2nd 2014 20:46 UTC) Java ver 1.7.0_55
build 2822 Windows 7 6.1 (x86)

List all reports available

$ pc2report --list

Report 1 Accounts
Report 2 Balloons Summary
Report 3 All Reports
Report 4 Contest Settings
Report 5 Contest XML
Report 6 Contest Analysis
Report 7 Solutions By Problem
Report 8 Submissions by Language
Report 9 Fastest Solutions Summary
Report 10 Fastest Solutions Per Problem
Report 11 Standings XML
Report 12 Logins
Report 13 Profiles
Report 14 Plugins
Report 15 Runs
Report 16 Clarifications
Report 17 Problems
Report 18 Languages
Report 19 Judgements
Report 20 Runs grouped by team
Report 21 Notification Settings
Report 22 Client Settings
Report 23 Groups
Report 24 Evaluations
Report 25 Runs (Version 8 content and format)
Report 26 Run 5 field
Report 27 Account Permissions Report
Report 28 Balloons Delivery
Report 29 Extract Replay Runs
Report 30 Run Notifications Sent
Report 31 Judgement Notifications
Report 32 Active Profile Clone Settings
Report 33 Sites
Report 34 Unused 2011 Event Feed XML
Report 35 Notifications XML
Report 36 Finalize-Certify
Report 37 Internal Dump
Report 38 Passwords
Report 39 accounts.tsv (team and judges)
Report 40 accounts.tsv (all accounts)

PC2 Administrator’s Guide 135 http://pc2.ecs.csus.edu/

Report 41 runs.tsv Report
Report 42 JSON Standings
Report 43 Unused 2013 Event Feed XML
Report 44 userdata.tsv
Report 45 groups.tsv
Report 46 teams.tsv
Report 47 scoreboard.tsv
Report 48 submissions.tsv
Report 49 ICPC Tools Event Feed
Report 50 Auto Judging Settings
Report 51 Judging Analysis
Report 52 JSON 2016 Scoreboard
Report 53 Contest Data Package

PC2 Administrator’s Guide 136 http://pc2.ecs.csus.edu/

Appendix L – PC2 XML (Legacy) Event Feed

PC2 is capable of generating event feeds which conform to various specifications managed
under the auspices of the Competitive Learning Initiative (the so-called CLI Contest System [CLICS]
specifications, which can be found at https://clics.ecs.baylor.edu/index.php/Main_Page). Included
in CLICS (at https://clics.ecs.baylor.edu/index.php?title=Event_Feed_2016) is a specification for an
XML-based event feed containing elements describing events which occur in a contest, including
such things as configuration information (e.g., teams, problems, and languages), run submissions,
judging results, etc.65

The XML event feed generated by PC2 is compatible with the Event Feed described in the
CLICS specification; refer to that specification for information on the content and structure of an
XML Event Feed. This appendix describes how to access a PC2 XML Event Feed.

PC2 supports two types of XML Event Feeds (EFs): static and dynamic. A static XML EF is
a text “snapshot” of the current state of contest events, in XML format. Static event feeds can be
generated at any time during a contest (including after the contest is over) and contain all the
information and in exactly the format described in the CLICS specification, but only for events that
have already happened at the time the snapshot EF is created.

Dynamic event feeds are streams which can be connected to by an external tool and which
provide continual updating as new events occur in the contest. The type of EF described in the
CLICS specification corresponds to a PC2 dynamic event feed (the CLICS specification makes no
mention of static event feeds; these are an extension supported by PC2). The XML contents of a
PC2 static event feed from a snapshot taken after a contest is over and has been “finalized” (see
below) will be exactly the same as the sequence of XML elements found in a PC2 dynamic event
feed at the end of the contest after the contest has been “finalized”.

Static event feeds (that is, text containing the XML event feed elements) are created using the
PC2 “Reports” facility on the Admin. Selecting the “Reports” tab on the Admin Main Screen allows
selection of a Report titled “Event Feed XML”.66 Viewing this Report will show the text of the
current event feed output (that is, all the XML events which will have been sent out to any external
tool listening to the dynamic event feed). The contents of the on-screen report can be copy/pasted
into an external editor and then saved as a file.67 Alternatively, pressing the “Save XML” button on
the XML Event Feed Report screen will prompt for a file name and save the entire XML event feed
(minus the PC2 header and trailer text, but only the XML for those events which have already
happened) in a file.

Accessing the PC2 dynamic event feed is a bit more complicated – but has the significant
advantage that an external tool can receive automatic event updates without further intervention by

65 Note that the XML event feed is deprecated by CLICS, in favor of a newer JSON-based event feed which is

integrated into the CLICS “Contest API”. PC2 supports both the older XML event feed (now referred to as the
Legacy Event Feed), as well as the newer JSON event feed (see the Web Services appendix for information on the
Contest API and the JSON event feed).

66 In some versions of PC2 this report may be titled “ICPC Tools Event Feed”.

67 When using this method be sure to omit the non-XML “header” text at the top of the report and the non-XML
“trailer text” at the bottom of the report in order to obtain valid XML.

PC2 Administrator’s Guide 137 http://pc2.ecs.csus.edu/

the Contest Administrator once the Event Feed is set up properly. PC2 does not generate a dynamic
event feed by default; in order to get it to do so it is necessary to start a special client called the
“Event Feed (EF) Client”, and then to start the EF Client listening for connections and outputting
XML events.

To start the EF Client it is necessary to create an Event Feed Account (an account of type
“FEEDER”) and login to that account. Event Feed accounts are generated like any other PC2

account: by selecting the Accounts tab on the Admin Configure Contest Screen, pressing
“Generate” to display the account generation screen, entering the number of Event Feed accounts
desired (normally there is no need for more than 1) and pressing “Generate Accounts” (see the
section on Account Generation for additional details).

Once the Event Feed account is generated, use the script “pc2ef” (located in the bin folder
along with all other PC2 support scripts) to start a client and login with the “feeder” account and
password (these default to “feeder1” and “feeder1” respectively, although this can be changed via
the Admin Accounts tab). Logging in with a feeder account displays the Event Feed Server
interface, shown below.

To start the Event Feed, select the desired port on which the Event Feed should be output (or
accept the CLICS default port of 4713) and click the “Start” button; this starts the Event Feed server
listening on the chosen port for connections and outputting XML events to that port as events occur
during the contest. The above screen shows an Event Feed Server that is ready to be started listening
on port 4713 with 4 hours and 57 minutes currently remaining in the contest. The “View” button
will generate a text display of the current (static) event feed XML, without the extra PC2

header/trailer information present in static event feeds generated using the Reports mechanism.

 Note: it is important to leave the Event Feed running for the entire contest; stopping it will
terminate the dynamic Event Feed. Restarting the Event Feed will reinitialize it, causing it to send
all events from the beginning of the contest again.

PC2 Administrator’s Guide 138 http://pc2.ecs.csus.edu/

The pc2ef command supports an optional “no GUI” capability. To start the Event Feed client
with no GUI, use the command

pc2ef --nogui --login <account> --password <pw>

This command causes the Event Feed to be automatically started with no Graphical User
Interface, using the specified account and password, and using the default port (4713). If the option
“--password” is omitted then a default password for the specified account is attempted. Note that
the options can be placed in a file using the –F option (see the section on using the –F option in the
Appendix on PC2 Server command line options for additional information).

See the Web Services Appendix for further details regarding the effects of starting the Event
Feed client in NOGUI mode.

One important additional note should be mentioned. The CLICS specifications requires that a
contest (and an Event Feed) be “finalized” after the contest is over. This process involves sending
a <finalized> XML element to the Event Feed(s), which is the indicator to external tools that the
contest is over. PC2 supports the “finalize” operation via the “Finalize” tab on the “Run Contest”
tab of the Admin; see the section on Finalizing in the chapter on Finishing the Contest for additional
details.

The finalization process includes the specification of the ranks (team places) which should
receive Gold, Silver, and Bronze medals in the contest (this is based on the ICPC World Finals,
where Gold Medals are given to the top four teams, Silver Medals are given to the teams placing 5th
through 8th, and Bronze Medals are given to teams placing 9th through 12th). These medal rank
values are output as part of the <finalized> element in the Event Feed (although external tools are
of course free to ignore them).

Note also that the output of the dynamic event feed is not “well-formatted XML” while the
contest is running: the opening <contest> element will not have a corresponding </contest> until
the contest is finished (“finalized”).

One additional important note applies if you are running a multi-site contest (meaning, you are
running multiple PC2 Servers, as described in the section on Server Startup) and also the XML Event
Feed is to be used as input to an external tool (for example, a tool such as the “ICPCTools Resolver”;
see https://icpc.baylor.edu/icpctools/). The PC2 XML Event Feed will automatically include
information for teams at all sites (regardless of the site at which the Event Feed is generated).
However, it is important to insure that all teams in the contest have unique team numbers. This is
because the XML Event Feed outputs the team ID (team number), and does not distinguish between
teams at different sites (the CLICS specifications were written without regard for the ability to run
a multi-site contest as supported in PC2). By default, team numbers at each site in a PC2 multi-site
contest start with “1” (so, there is a “team1” at Site 1, a “team1” at Site 2, and so forth). This is
incompatible with the current ICPCTools Resolver (and possibly with other tools as well).

To avoid this problem, when using the PC2 Admin “Generate Accounts” function to generate
accounts for each site, be sure to use the “Start Account Number At…” field on the “Generate
Accounts” pane to specify a different “starting account number” for teams at each site (for example,
specify “Start Account Number at: 101” for teams at Site 1; specify “Start Account Number at: 201”

PC2 Administrator’s Guide 139 http://pc2.ecs.csus.edu/

for teams at Site 2, etc.68). This will insure that the team IDs inserted into the XML Event Feed will
be unique for each team across all contest sites, as required by some external tools.

68 This example assumes you have at most 100 teams at any given site.

PC2 Administrator’s Guide 140 http://pc2.ecs.csus.edu/

Appendix M – PC2 Web Services

PC2 contains an embedded web server designed to provide a variety of “RESTful” web
services69. The embedded web server is disabled by default; it must be explicitly started by logging
in using an Event Feed Account (see the Appendix on the PC2 Event Feed). Logging into an Event
Feed account displays the Event Feed Server interface as shown in the Event Feed Appendix;
clicking the Web Services tab produces the following web server control display:

As shown above, the user can specify the port on which the web server listens (the default is
50443), as well as enable a variety of web services (REST resource endpoints). Clicking the Start
button then starts the web server listening on the specified port and responding to requests for the
enabled web services.

The embedded web server requires HTTPS connections and uses “BasicAuth” authentication.
This means that connecting to the web server requires providing user/password credentials as
defined by the BasicAuth specification.70 The web server obtains credential information (for
comparing against the user/password provided by connecting clients) by reading a file named
realm.properties, which must exist in the folder from which the Event Feed login is started. (A
sample realm.properties file is included in the PC2 distribution; note however that all credential
information in the sample file is commented-out.)

69 See https://en.wikipedia.org/wiki/Representational_state_transfer for information on REST.
70 See https://en.wikipedia.org/wiki/Basic_access_authentication. Note in particular that this means that the server

responds to unauthenticated requests with a response whose header contains a HTTP 401 Unauthorized status and a
WWW-Authenticate field, and that the client is expected to provide authentication in the form of an Authentication
field constructed as described in the above-referenced specification.

PC2 Administrator’s Guide 141 http://pc2.ecs.csus.edu/

Each non-comment line in the realm.properties file specifies three types of information: a
username, the password associated with the specified user name, and a set of one or more roles
associated with the user name. The general form of a realm.properties entry is

username: password,role1[,role2…]

The web server compares the user name and password provided by the connecting client with
the set of username/password entries in the realm.properties file; if a match is found then the client
connection is accepted and the client is assigned the role(s) specified on the matching line. The web
server currently recognizes two “roles”: public and admin. The role(s) associated with a client
determine what services the user may access (see the table below).

A simple mechanism for verifying proper PC2 web server operation is to start the web server
and then point a browser to https://<ip>:<port>/service (where <ip> and <port> are the IP address
and port where the web server was started and /service is one of the REST endpoints listed in the
table below) – for example, https://198.1.100.0:50443/scoreboard. This should
return to the browser a request for credentials (username and password); entering valid credentials
as specified in the realm.properties file should return the output corresponding to the specified
service.

If the Event Feed client is started in “nogui” mode, the component’s Graphical User Interface
(shown above) is never displayed and therefore there is no way to interactively select the Web
Services tab and start the web server. However, web services can be enabled in nogui mode by
creating a file named “pc2ws.properties” in the Event Feed client’s startup directory containing
properties identifying what web services should be started. The pc2ws.properties file (example
found in samps/pc2wd.properties) can contain the following entries to start the web server and
enable the corresponding web services:

port for web service
port=50443

#enable CLICS Contest API (defaults to enabled unless "no" is specified)
enableCLICSContestAPI=yes

enable starttime web service
enableStartTime=yes

enable submission_files web service
enableFetchRun=yes

See the PC2 Wiki “Event Feed Module” entry (https://pc2.ecs.csus.edu/wiki/Event_Feed_module)
for additional details.

PC2 Administrator’s Guide 142 http://pc2.ecs.csus.edu/

The currently available REST services are defined in the following table (note that the first
three comprise the PC2 implementation of the CLI CCS JSON Scoreboard specification71).
Additional REST services are planned for a future version of PC2.

The following points should be noted regarding the PC2 web server:

 The web server is designed to support requests for contest data services based on various CLI
Specifications72. It is not intended to support web access to PC2 by teams (see the separate
Appendix on Team Clients for information on web access for teams).

 Web servers are inherently “resource intensive” (memory, CPU, etc.). Care should be taken
regarding the machine on which the web server is run (it runs on the same machine as the PC2
component which is used to start it). If the machine is going to be overloaded as a result of
adding the web server, consideration should be given to running the web server on a separate
machine. (This can be easily accomplished by starting the Event Feed client on the desired
machine, using it solely to start and manage the web server.)

71 See https://clics.ecs.baylor.edu/index.php/JSON_Scoreboard_2016
72 See https://clics.ecs.baylor.edu/index.php

REST
Endpoint

Roles
Allowed
Access

GET Response PUT Response

/scoreboard admin,
public

The current contest
scoreboard in JSON format

405 Method not Allowed

/teams admin,
public

A list of the teams in the
contest in JSON format

405 Method not Allowed

/problems admin,
public

A list of the problems in the
contest in JSON format

405 Method not Allowed

/languages admin,
public

A list of the languages in the
contest in JSON format

405 Method not Allowed

/starttime admin A JSON String giving the
scheduled contest start time
as a Unix Epoch value, or the
string "undefined" if no start
time is currently scheduled

Resets the current contest scheduled
start time according to the received
(input) string, which is expected to be in
JSON format as described in the CLICS
Wiki "StartTime" interface specification

PC2 Administrator’s Guide 143 http://pc2.ecs.csus.edu/

Appendix N – PC2 Team Clients

PC2 supports two different types of Team Client. The first is the traditional Application Team
Client which has been standard since the first version of the system. With the Application Team
Client, PC2 must be installed on each team machine and each team machine must be provided with
a pc2v9.ini file pointing to the PC2 server, as described earlier in this manual.

Since PC2 Version 9.7 the system supports an alternative Team Client known as the Web Team
Interface (WTI). The Web Team Interface was developed by students at Eastern Washington
University, under the direction of Professor Tom Capaul.73 The WTI is a web-based interface to the
PC2 server; it provides an embedded web server which listens for team browser connections and
provides communication between the team browser session and the PC2 server.74 Teams use the
browser for submitting runs, checking results, submitting and examining clarification results,
viewing the scoreboard, etc. Since every modern machine installation includes a web browser, using
the WTI means that no additional software needs to be installed on the team machines to allow
teams to connect to the PC2 server.

The WTI provides all the services provided by the PC2 Application Team Client, with one
exception: currently it does not support the "Test Run" facility.

By default the WTI server listens for connections at port 8080 on the machine on which is it
running, and forwards information to the PC2 server at the IP address and port specified in the
[client] section of the WTI’s pc2v9.ini file (the default values for the WTI’s connection to
the PC2 server are localhost:50002). Both the IP address and port on which the WTI server
listens for team (browser) connections and the address/port of the PC2 server to which it connects
can be adjusted, simply by editing the WTI’s pc2v9.ini file. The WTI server does not need to
be running on the same machine as the one on which the PC2 server is running.

 The WTI distribution includes a “User’s Guide” for teams – a handout explaining what the
WTI looks like and how to use it, analogous to the “PC2 Team Guide” for the Application Team
Client. The WTI User’s Guide can be found in the “doc” folder of the WTI distribution (see below).

IMPORTANT NOTE: In order to support using the WTI, the PC2 configuration must include
a “scoreboard account” designated for use by the WTI. This account is used by the WTI to access
current contest standings for the team display. Such an account must be created by the Contest
Administrator when setting up contest accounts using the "Generate Accounts" function in the PC2
Admin. By default the WTI expects to use account “scoreboard2” with password
“scoreboard2”, but this is configurable and any scoreboard account can be used. However, the
designated account SHOULD NOT BE USED FOR ANY FUNCTION OTHER THAN
SUPPORTING THE WTI CLIENT. If you plan to also run a separate “PC2 Scoreboard”, use a
different account for that function. Note also that in any case, we strongly recommend you change

73 Previous versions of PC2 supported an older “web interface” client, called EWTeam, which was also developed by

EWU students under Tom’s direction. Documentation on the older EWTeam client is available in previous
versions of this Guide, which can be found through the PC2 website.

74 PC2 users who are familiar with the old EWTeam client will recognize that this is different: whereas the EWTeam
required embedding PHP code into an existing webserver, the newer WTI client has its own self-contained
webserver.

PC2 Administrator’s Guide 144 http://pc2.ecs.csus.edu/

the PC2 password for the scoreboard account to insure that no unauthorized individuals can log in
using the (well-documented) “default password”.

Prerequisites for using the WTI

 Team machines must have the ability to make an HTTP browser connection to the
machine/port where the WTI server is running (see the next section regarding configurations
where the WTI server is running behind a firewall or other component using Network
Address Translation (NAT)) .

 The WTI machine must have the ability to make TCP/IP connections to the machine/port on
which the PC2 server is running.

 The PC2 Admin must be used to create a scoreboard account to be used (exclusively) by the
WTI. By default the WTI expects the Contest Administrator to create account “scoreboard2”
for its exclusive use (see below). Note that we strongly recommend changing the scoreboard
account password!

Setting Up the WTI

1) In the PC2 distribution, go to the “projects” folder, copy the file WebTeamInterface-
xx.zip (or .tar.gz) to any convenient location on any machine, and unzip it.

2) If needed, edit the pc2v9.ini file under the WebTeamInterface-xx folder (NOT the
pc2v9.ini in the PC2 server folder) as follows:

a. If the scoreboard account which is designated for use by the WTI is anything other than
“scoreboard2” with the default password (also “scoreboard2”), update the
wtiscoreboardaccount=xxx and the wtiscoreboardpassword=yyy
entries to contain the correct scoreboard account/password values. (See IMPORTANT
NOTE, above.)

b. If the WTI server is running on a different machine from where the PC2 server is running,
then in the [client] section, change the default server=localhost:50002
entry to contain the IP address of the PC2 server machine (instead of “localhost”).
If the PC2 server was started on a different port than the default (50002), update the port
value in the [client] section server= entry as well.

c. If the WTI server should listen for team browser connections on some port other than
the default (8080), update the wtiport= entry in the [server] section to contain
the desired port number.

d. If the WTI server is running on a machine with a private IP (for example, behind a NAT
firewall), add an entry to the WTI pc2v9.ini file of the form

PC2 Administrator’s Guide 145 http://pc2.ecs.csus.edu/

wtiOverridePublicIP=w.x.y.z, where w.x.y.z is the public-facing IP
address of the WTI server (that is, the IP address to which team browser sessions will
initially connect). This is necessary to insure that connections following the initial
contact by the browser will be directed by the WTI client code running in the browser to
the correct (publicly-visible) IP address of the WTI server.

Starting the WTI

1) Go into the WebTeamInterface-xx folder.

2) Execute the command ./bin/pc2wti.

This starts the WTI webserver running, listening for team browser connections on the specified
(or default) port. At this point teams should be able to open a browser window pointing to the WTI.
The URL which teams should use will be http://<IP>:<port>, where <IP> is the public-
facing IP address of the machine on which the WTI server is running and <port> is the port
specified in the WTI’s pc2v9.ini file (default 8080).

PC2 Administrator’s Guide 146 http://pc2.ecs.csus.edu/

Appendix O – Input Validators

1. Overview

PC2 allows the Contest Administrator to configure each contest problem so that it has
associated with it one or more input validators.75 An input validator is a program which is given, as
input, a judge’s data file (that is, a data file which a team’s program is expected to read and process).
The input validator program contains logic to make a determination, according to some set of rules,
regarding the correctness of the judge’s data.

PC2 supports two types of input validators. First, PC2 contains an embedded copy of the
VIVA Input Validator.76 VIVA supports a “pattern language” that allows a user to describe the
required syntax of a judge’s data file; PC2 can be used to invoke VIVA with a specified pattern and
display the results when the pattern is applied by VIVA to each contest problem judge’s data file.

PC2 also supports custom input validators. A custom input validator is an external program,
written by the Contest Administrator (or staff), which accepts as input a judge’s data file and returns
an indication of whether the data file is “valid”. Custom input validators can be written in any
language whose compiler (or interpreter) can be invoked from a command line. PC2 arranges that
when a custom input validator is run, each judge’s data file is passed to the custom input validator;
PC2 then displays the results.

Each contest problem can be configured so that it does (or does not) have a VIVA pattern,
and can also be independently configured so that it does (or does not) have a custom input validator.
Note however that running an input validator is a manual process (input validators are never run
automatically; see below), so if a problem is configured with both a VIVA pattern and a custom
input validator the user must manually choose which one is to be executed. (Both may be executed,
but each one must first be ‘selected’.)

Note also that while it is a bit of work to write an input validator (or even to write a VIVA
pattern) to verify that all judge’s test data files are valid, it can save a contest from disaster: if a last-
minute change to a judge’s data file inadvertently introduces an illegality in the data, running an
input validator will catch this – otherwise, it might not be caught until well into the contest (or not
at all!)

As with output validators (and virtually every other configuration item in PC2), input
validators can be configured either interactively or via YAML configuration files (see the chapter
on Configuring the Contest via Configuration Files for details on YAML configuration files). The
following sections describe interactive input validator configuration, and input validator
configuration using a YAML file.

75 As previously noted, the CLICS CCS specification defines two types of validators: input validators, which examine

the judge’s input data to insure the data complies with the specifications given in the contest problem statement, and
output validators, which examine the output of a team’s program for correctness. PC2 supports both types of
validators; this appendix is about input validators.

76 VIVA is “Vanb’s Input Verification Assistant”. Permission to embed VIVA within PC2 was kindly granted by
David “vanb” Van Brackle, the author of VIVA.

PC2 Administrator’s Guide 147 http://pc2.ecs.csus.edu/

2. Interactive Input Validator Configuration

Input validators can be configured using the Input Validator tab on the Contest
Administrator’s Edit Problem or Add problem screens (the Edit Problem or Add Problem screens
are accessed by clicking on the Problems tab of the Admin’s Configure Contest screen, then
clicking either the Edit or Add button). The same screen is used to configure (and invoke) both
VIVA and custom input validators.

When any change is made on the Input Validator configuration tab, pressing the Update
button saves the input validation configuration (along with any run results) as part of the problem
configuration. Note that input validators are not run automatically in PC2; the Contest Administrator
must use the Run VIVA and/or Run Custom Input Validator buttons to test the judge’s input data
files with the corresponding input validator.

2.1. VIVA Input Validator Configuration

The following shows the Input Validator tab with the Use VIVA Input Validator option
selected:

PC2 Administrator’s Guide 148 http://pc2.ecs.csus.edu/

The example problem shown on the above screen has been configured with two input
validators: VIVA as well as a custom input validator. Because the VIVA input validator is currently
selected, this automatically enables the VIVA Load Pattern, Run VIVA, and Save Pattern buttons.
The Load Pattern button has been used to load a VIVA pattern from a file (patterns can also be
typed directly into the Pattern text area).

VIVA patterns are by convention stored in a file whose name ends with the suffix “.viva”
and are placed in a folder named “input_validators” beneath the problem-specific folder (that is,
beneath the folder named as the problem’s “short-name”) which in turn is stored beneath the contest
“config” folder.

The VIVA pattern displayed above says that each judge’s input data file must consist of a
series of lines, each containing a single integer, and that the file data is terminated by a line
containing a sentinel value of zero.77

Pressing the Run VIVA button will cause PC2 to send each judge’s data file that has been
configured into the contest problem (as shown on the Test Data Files tab) to VIVA, along with the
current VIVA pattern, and then to display an “Input Validation Results” screen similar to the
following:

Note that in this example, four judge’s data files have been configured on the Test Data
Files screen; two of them passed VIVA validation while two failed to match the VIVA pattern.

77 Refer to the VIVA User’s Guide, which can be found in the “doc” folder under the PC2 installation, for a complete

description of VIVA patterns and how they work.

PC2 Administrator’s Guide 149 http://pc2.ecs.csus.edu/

Clicking on any row in the Input Validation Results table will show details of the validation
for the file listed in that row. For example, clicking on the fourth row produces the following dialog:

Note on the above screen that VIVA reports that there is extra data in the file after the
expected input is completely processed. Clicking on the leftmost tab to display the file contents
produces the following display:

This shows that the data file indeed has data following the sentinel value of zero (recall that the
specified VIVA pattern says that the data file terminates with a line containing a zero).

PC2 Administrator’s Guide 150 http://pc2.ecs.csus.edu/

2.2. Custom Input Validator Configuration

Selecting the Use Custom (user-supplied) Input Validator button on the Input Validator
tab allows configuring a custom input validator:

Custom input validators require two configuration items: the name of the input validator
program which is to be run, and the input validator command which is used to invoke the program.
In the above example, the Choose Program… button has been used to select a Java program (.class
file) named SumitInputValidator.class, and the input validator command has been set to invoke
the Java JVM, passing to it the basename of the program (that is, the program name omitting the
“.class” extension).

(Note: custom input validator programs, like VIVA pattern files, are by convention stored in
a folder named “input_validators” beneath the problem-specific configuration folder under the
“config” folder.)

Variable substitutions in the input validator command are supported as with other PC2
command configurations, and PC2 will automatically add an appropriate input validator command
when it recognizes certain input validator programs (for example, the above input validator
command “java {:basename}” was automatically added when PC2 recognized that the input
validator program was a “.class” file).

PC2 Administrator’s Guide 151 http://pc2.ecs.csus.edu/

Pressing the Run Custom Input Validator button runs the custom input validator against
each of the test data files configured in the problem and displays an Input Validation Results table
analogous to the one shown above for VIVA.

A custom input validator can be written in any language, as long as the input validator
command used to invoke it knows how to execute the input validator program (in other words, as
long as the same command works correctly when typed at a command prompt). The input validator
program should terminate with an Exit Code of 42 to indicate success (i.e., to indicate that the input
data file passes validation). Any Exit Code other than 42 is interpreted by PC2 to mean that the input
data file failed input validation. (This follows the ICPC Problem Format specification, given at
https://icpc.io/problem-package-format/spec/problem_package_format#input-validators.)

3. Input Validator Configuration via YAML Files

As with nearly all PC2 configuration items, input validator configuration can be
accomplished via YAML files. To configure input validator(s) via YAML, the contest.yaml file
must contain a problemset YAML key with entries giving the name of each contest problem, and
there must be a folder corresponding to each problem name beneath the config folder. Each problem
folder beneath the config folder must contain a file named problem.yaml, and the problem.yaml
file must contain a YAML section defined with the keyword input_validator.

The input_validator section of the problem.yaml file may contain any (or all) of the
following keys, each of which would be followed by an equal sign and the value associated with that
key:

YAML Key Corresponding Value Notes

defaultInputValidator NONE, VIVA, or CUSTOM Sets the default (currently-selected)
Input Validator type

customInputValidatorProg The name of the custom input
validator program

Sets the custom input validator
program name

customInputValidatorCmd A string giving the command used
to invoke a custom input validator

Sets the command to be executed
when the Admin’s “Run Custom Input
Validator” GUI option is invoked.

vivaPattern A string containing a VIVA pattern Sets the VIVA pattern to be applied
when VIVA is run

vivaPatternFile The name of a file containing a
VIVA pattern

If both vivaPattern and
vivaPatternFile are specified, the
vivaPattern is used

As an example, the following files might be used to configure a contest with a problem named
“sumit”:

PC2 Administrator’s Guide 152 http://pc2.ecs.csus.edu/

Contest.yaml file stored in the config folder:

Contest name:

name: Sumit Example

short-name: SumitEX

duration: 5:00:00

scoreboard-freeze-length: 1:00:00

languages:

 - name: Java

 active: true

 - name: GNU C++

 active: true

problemset:

 - letter: A

 short-name: sumit

 color: yellow

 rgb: "#FFFF00"

Problem.yaml file stored in folder “sumit” beneath the “config” folder:

name: Sumit

timeout: 10

input_validator:

 defaultInputValidator: custom

 vivaPattern: '{x;}'

 customInputValidatorProg: 'SumitInputValidator.class'

 customInputValidatorCmd: 'java {:basename}'

The above problem.yaml file specifies that the problem named “Sumit” (which is stored in folder
“sumit”) has a 10-second run time limit and has a default input validator type of “custom”, a VIVA
pattern of “{x;}”, and a custom input validator program named “SumitInputValidator.class” which
is invoked using the command “java SumitInputValidator”. (Note that the above is not a complete
problem.yaml file; it is only intended to show how to configure input validators. Typically the
problem.yaml file would contain other entries as well, such as the output validator configuration,
information on where team programs should read their input (for example, from stdin or from a file),
etc.)

Note that the “sumit” folder beneath the “config” folder should also contain folders “data”,
holding the “sample” and “secret” data files in correspondingly-named subfolders;
“input_validators”, holding the “SumitInputValidator.class” file; and “problem_statement”,
holding a LaTex copy of the problem statement containing at least a \problemtitle{Sumit} statement
giving the problem title. See the CLICS Contest Data Package specification for more information
on the structure of a Contest Data Package (CDP).

PC2 Administrator’s Guide 153 http://pc2.ecs.csus.edu/

Appendix P – reject.ini

PC2 allows the Contest Administrator to initially configure judgements using a reject.ini file.
This file must be present on the server machine in the installation directory (the directory that has
the pc2 bin/ directory) or (since Version 9.7) in the folder containing the Contest Data Package
(CDP) which is used to configure the contest. These judgements are loaded once on initial server
startup. These judgement names and acronyms can be changed at any time using the Admin from
the Judgements tab under the Configure Contest tab.

Each judgement text from the reject.ini will be loaded and prepended with a “No - “ phrase.
There is one exception: a line that has an AC judgement acronym will not have a “No – “ phrase
prepended.

File Format and Contents

Blank lines and lines starting with # are ignored.

Each line contains a judgement and optional judgement acronym delimited by a vertical bar (|), for
example:

Time Limit Exceeded|TLE

This would produce a judgement with the text “No -Time Limit Exceeded”

Example 1 – reject ini judgements and acronyms

reject.ini with acronyms
Compilation Error|CE
Run-time Error|RTE
Time Limit Exceeded|TLE
Wrong Answer|WA
Excessive Output|EE
Output Format Error|EFE
Various Differences|VD
Other - Contact Staff|CS
Yes, yes, yes|AC

When loaded that will produce the following judgements:

Note that the AC acronym line from the reject.ini did not have the “No – “ prepended.

Yes, yes, yes
No - Compilation Error
No - Run-time Error
No - Time Limit Exceeded
No - Wrong Answer
No - Excessive Output
No - Output Format Error
No - Various Differences

PC2 Administrator’s Guide 154 http://pc2.ecs.csus.edu/

No - Other - Contact Staff

Note that if the judgement acronym is AC then that will replace the Yes judgement text.

Example 2 – reject.ini with judgements only

reject.in with judgements but no acronyms
Compilation Error
Run-time Error
Time-limit Exceeded
Wrong Answer
Excessive Output
Output Format Error
Other - Contact Staff

When loaded that will produce the following judgements:

Yes
No - Compilation Error
No - Run-time Error
No - Time Limit Exceeded
No - Wrong Answer
No - Excessive Output
No - Output Format Error
No - Other - Contact Staff

For additional information refer to the Wiki Article https://pc2.ecs.csus.edu/wiki/Reject.ini

PC2 Administrator’s Guide 155 http://pc2.ecs.csus.edu/

Appendix Q – GUI Customization

Starting with Version 9.7, PC2 allows customizing the appearance of the PC2 login screen by adding
your own University or Club logo and your own contest-specific banner to it.

Customization is accomplished by creating a new folder named “images” in the PC2 installation
folder (that is, in the folder containing the PC2 bin, data, doc, lib, and samps folders) and then
adding appropriate image files to the “images” folder. Be sure that both the images folder and the
image files within it are readable.

When PC2 starts, it looks for files named “logo.png” (or “logo.jpg”) and “banner.png” (or
“banner.jpg”) in the “images” folder. If a “logo.png” or “logo.jpg” file is found, PC2

replaces the default University logo on the login screen with the image found in that file. If a
“banner.png” or “banner.jpg” file is found, PC2 replaces the default ICPC banner at the bottom
of the login screen with the image found in that file. (If both a .png and a .jpg file are present,
the .png file is used.)

Care should be taken to provide logo and banner files with proper aspect ratios. Logo files should
be (approximately) square, while banner files are typically several (4-10) times as wide as they are
high. Any provided logo file will be automatically scaled to be square and to fit in the available
login screen logo area (approximately 130x130 pixels); likewise, any provided banner file will be
automatically scaled to fit in the login screen bottom banner area (approximately 750 pixels wide by
70 pixels high). User-provided images should be designed with these sizes in mind.

Note that the images folder/files must be present on each PC2 client machine. If you want all your
PC2 clients to have the same customized appearance, we suggest you unzip your initial PC2
installation, add the images to this master configuration, then re-zip the system and copy the new
zip to all your clients. (Alternatively, just copy the images folder/files to each client machine.)

PC2 Administrator’s Guide 156 http://pc2.ecs.csus.edu/

The following shows a login screen which has been customized with (somewhat artificial) user-
provided logo and banner files:

PC2 Administrator’s Guide 157 http://pc2.ecs.csus.edu/

Appendix R – Shadow Mode

1. Overview

Starting with Version 9.7, PC2 supports the ability to run in so-called shadow mode.78 Shadow
mode is a mechanism whereby the PC2 system, rather than directly managing a contest, is instead
used to verify the results of a contest being managed by a different contest control system.

Running a contest control system in shadow mode (or just “running a Shadow”, as it’s usually
referred to) is regularly used in competitions such as the ICPC World Finals, as well as at many
ICPC Championships and other contests. In such competitions, there are two independent contest
control systems used during the contest – one called the Primary CCS and a second called the
Shadow CCS. Teams communicate (only) with the primary CCS, sending submissions to it and
getting back judgements and standings information from it.

Submissions are also sent (without teams really being aware of it) from the primary to the
shadow CCS. This is accomplished by having the shadow login to the primary CCS through a
defined interface. In particular, PC2 expects to communicate with the primary CCS (the CCS which
it is shadowing) through a standard “Contest API” defined by the Competitive Learning Initiative
Contest Systems group (CLICS). The specification for the CLICS Contest API can be found at
https://clics.ecs.baylor.edu/index.php?title=Main_Page.

 Once logged in to the primary CCS, the shadow PC2 system uses the CLICS API to fetch
team submissions from the primary and then executes those submissions just as if they had been sent
directly to the shadow by the team. The shadow then uses the execution results to compute contest
standings. Contest results computed by the shadow are then compared with those computed by the
primary; in this way it is possible to have independent verification that the contest results are correct.

Note that while it is theoretically possible to have PC2 shadow itself (and this is sometimes
done for testing purposes), the real reason for using shadow mode is to have PC2 provide independent
verification that the results computed by some other Contest Control System implementation agree
with the results computed by PC2.

2. Shadow Setup

PC2 can be configured to run in shadow mode using either of two mechanisms: interactively,
or via YAML configuration files. The following sections describe how to set up a PC2 system using
these approaches.

2.1. Interactive Setup

Interactive shadow mode configuration is controlled through the PC2 Contest Administrator’s
Configure Contest > Settings screen, as shown below:

78 Shadow mode support was actually introduced in PC2 Version 9.5, but that support was limited and relied on a
deprecated interface; the current implementation is much more general and robust.

PC2 Administrator’s Guide 158 http://pc2.ecs.csus.edu/

(Note that the Settings tab has been selected and scrolled down; the shadow mode
configuration settings are contained within the Remote CCS Settings section at the bottom of the
screen.)

To configure shadow mode, enter the URL which the PC2 shadow will use to connect to the
primary CCS, along with the account name and password which PC2 will use to login to the primary
CCS. Note that, as mentioned above, PC2 expects the primary CCS to support the CLICS Contest
API.

To enable shadow mode, check the Enable Shadow Mode checkbox. In addition, check the
Enable CCS Test Mode box (this box is a legacy configuration item which must be enabled in order
for shadow mode to work). Finally, click the Update button to load the shadow configuration into
PC2.

2.2. YAML Configuration

As with almost all other configuration items in PC2, shadow mode can be fully configured via
a YAML file (see the chapter on Configuring the Contest via Configuration Files). In particular, the
following YAML keys can be included in a configuration file to configure PC2 for shadow mode:

shadow-mode: true
ccs-test-mode: true
ccs-url: <URL for primary CCS>
ccs-login: <login account on primary CCS>
ccs-password: <primary CCS account pw>
ccs-last-event-id: <event id from which shadowing should start> (see below)

PC2 Administrator’s Guide 159 http://pc2.ecs.csus.edu/

2.3. Shadow Contest Configuration

In addition to configuring the PC2 system (either inactively or via YAML files) for shadow
mode, PC2 must have a contest configuration which matches the configuration in the primary CCS.
For example, PC2 must be told what languages and problems are being used in the contest, what
teams (accounts) are competing, etc. All of this configuration needs to be set up prior to starting
shadowing operations.

The standard PC2 contest configuration mechanisms are used to accomplish shadow contest
configuration. The Contest Administrator must obtain the contest configuration details from the
group that configures the contest in the primary CCS. (If the primary CCS is using a CLICS “CDP”
to configure their contest, that CDP can be loaded into PC2 as well (see the Chapters on Contest
Configuration)). In any case, at least the contest languages, problems, and team accounts must be
configured in PC2 to match the primary CCS in order for shadowing to work correctly.

In addition to configuring the shadow contest to match the primary CCS, shadowing is really
only practical if PC2 is configured for “Auto-Judging” the contest problems. (Otherwise, variations
in human judging could cause the shadow results to be different from those computed by the primary
CCS.) This means that the following additional steps should be included when setting up a PC2
shadow:

1) Configure all problems for “Computer Judging”.

2) Configure one or more “Auto-Judge” accounts so that all contest problems have at least
one “Auto-Judge” assigned to them.

3) Start one or more “Auto-Judges”.

3. Starting Shadowing

The above steps configure a PC2 system for shadow operations, but they do not actually start
the system performing shadowing. To start shadowing it is necessary to run a PC2 Event Feeder
module. (The Event Feeder is a composite module which supports a variety of external
communication functions for a PC2 system; see the Appendices on the PC2 XML (Legacy) Event Feed
and on PC2 Web Services for additional features of the Event Feeder module.)

In order to run a PC2 Event Feeder there must first exist a Feeder account with which to login;
at least one such account must be created using the PC2 Admin Accounts > Generate function. Once
a Feeder account has been created, an Event Feeder module can be started by executing the command
./bin/pc2ef and logging in using the Feeder account. This will display the following screen
(note that the Shadow Mode tab has been selected):

PC2 Administrator’s Guide 160 http://pc2.ecs.csus.edu/

This screen displays the current shadow mode values (as configured either interactively or via
a YAML file). It also displays an additional field, Last Event ID. This field can be used to inform
the primary CCS that the shadow wishes not to start from the very beginning of the contest, but
rather is only interested in events which have occurred since the specified Last Event ID. This is
useful when restarting a shadow which has already fetched and executed large amounts of data from
the primary; it avoids having to repeat the fetch/execute cycle for submissions already processed by
the shadow. The format of the Last Event ID must match the format of event IDs sent from the
primary CCS.

One thing to note is that this screen does not provide for enabling the legacy CCS Test Mode
state, which is required for shadow operations to proceed. This is one reason why it is necessary to
either configure shadow mode interactively (and check the CCS Test Mode box), or to specify ccs-
test-mode: true in a YAML file.

The Test Connection button can be used to verify that the PC2 shadow can establish a
connection to the primary using the specified URL; pressing Test Connection will return a failure
message if no connection could be established. Note: Test Connection only verifies that there is a
valid network path to the specified URL. It does not, for example, actually login to the remote
(primary) system, validate credentials, or similar operations.

Pressing the Start Shadowing button will cause PC2 to login to the primary CCS and begin
fetching and (presuming an Auto-Judge has been started) executing submissions.

4. Comparing Shadow Results

Starting a PC2 scoreboard (as described elsewhere in this manual) will allow viewing the PC2-
computed results for comparison with the primary CCS. However, this is really only practical at the
end of a contest (otherwise, it’s hard to grab the primary and shadow scoreboards at exactly the same
moment/state).

PC2 Administrator’s Guide 161 http://pc2.ecs.csus.edu/

A much more useful method of comparing what the shadow is doing with respect to the
primary is to press the Compare button after pressing Start Shadowing. Assuming (1) a successful
connection to the primary CCS, (2) that submissions exist in the primary CCS, and (3) that PC2
Auto-Judging has been enabled, the Compare button will produce a screen similar to the following:

This screen shows that currently the PC2 shadow has fetched a total of 20 submissions from
the primary CCS; 2 of them (green) “match” (that is, PC2 arrived at the same judgement as the
primary), 6 (red) did not match (PC2 arrived at a different judgement), and 12 submissions (yellow)
are “pending” (still being judged by PC2).

Note that this is an artificially-created example; it contains more “non-matches” than would
normally be expected – but it shows for example how there might be a problem between the shadow
and primary configurations (specifically, since all 6 “non-matches” are for submissions using C++
and the assigned judgement in all cases was “CE” (compiler error), there might be a configuration
discrepancy with respect to the configuration for the C++ language).

The Compare screen can be sorted on any column by clicking in that column’s header. The
screen does not automatically update, but it can be refreshed (updated with the current status) by
clicking the Refresh button. Clicking Save As .csv allows saving the current results in .csv format
in a selectable file.

