Connecting Towns

Gandalf is travelling from Rohan to Rivendell to meet Frodo but there is no direct route from Rohan (T_{1}) to Rivendell (T_{n}).

But there are towns $T_{2}, T_{3}, T_{4} \ldots T_{n-1}$ such that there are N_{1} routes from Town T_{1} to T_{2}, and in general, N_{i} routes from T_{i} to T_{i+1} for $\mathrm{i}=1$ to $\mathrm{n}-1$ and 0 routes for any other T_{i} to T_{j} for $\mathrm{j} \neq \mathrm{i}+1$

Find the total number of routes Gandalf can take to reach Rivendell from Rohan.

Note

Gandalf has to pass all the towns T_{i} for $\mathrm{i}=1$ to $\mathrm{n}-1$ in numerical order to reach T_{n}.
For each $\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}+1}$ there are only N_{i} distinct routes Gandalf can take.

Input Format

The first line contains an integer T , T test-cases follow.
Each test-case has 2 lines. The first line contains an integer N (the number of towns).
The second line contains N-1 space separated integers where the $i^{\text {th }}$ integer denotes the number of routes, N_{i}, from the town T_{i} to $\mathrm{T}_{\mathrm{i}+1}$

Output Format

Total number of routes from T_{1} to T_{n} modulo 1234567
http://en.wikipedia.org/wiki/Modular_arithmetic

Constraints

$1<=\mathrm{T}<=1000$
$2<\mathrm{N}<=100$
$1<=\mathrm{N}_{\mathrm{i}}<=1000$

Sample Input

```
2
3
13
222
```


Sample Output

3
 8

Explanation

Case 1: 1 route from T_{1} to $T_{2}, 3$ routes from T_{2} to T_{3}, hence only 3 routes.
Case 2: There are 2 routes from each city to the next, at each city, Gandalf has 2 choices to make, hence $2 * 2 * 2=8$.

