# **Connecting Towns**



Gandalf is travelling from **Rohan** to **Rivendell** to meet Frodo but there is no direct route from **Rohan**  $(T_1)$  to **Rivendell**  $(T_n)$ .

But there are towns  $T_2, T_3, T_4...T_{n-1}$  such that there are  $N_1$  routes from Town  $T_1$  to  $T_2$ , and in general,  $N_i$  routes from  $T_i$  to  $T_{i+1}$  for i=1 to n-1 and 0 routes for any other  $T_i$  to  $T_j$  for  $j \neq i+1$ 

Find the total number of routes Gandalf can take to reach Rivendell from Rohan.

## Note

Gandalf has to pass all the towns  $T_i$  for i=1 to n-1 in numerical order to reach  $T_n$ . For each  $T_i$ ,  $T_{i+1}$  there are only  $N_i$  distinct routes Gandalf can take.

## **Input Format**

The first line contains an integer T, T test-cases follow. Each test-case has 2 lines. The first line contains an integer N (the number of towns). The second line contains N - 1 space separated integers where the i<sup>th</sup> integer denotes the number of routes, N<sub>i</sub>, from the town T<sub>i</sub> to T<sub>i+1</sub>

## **Output Format**

Total number of routes from  $T_1$  to  $T_n$  modulo 1234567 http://en.wikipedia.org/wiki/Modular\_arithmetic

## Constraints

 $\begin{array}{l} 1 <= T <= 1000 \\ 2 < N <= 100 \\ 1 <= N_i <= 1000 \end{array}$ 

## Sample Input

| 2   |  |  |  |
|-----|--|--|--|
| 3   |  |  |  |
| 13  |  |  |  |
| 4   |  |  |  |
| 222 |  |  |  |
|     |  |  |  |

#### Sample Output

| 3 |  |  |  |
|---|--|--|--|
| 0 |  |  |  |
| 0 |  |  |  |
|   |  |  |  |

#### Explanation

Case 1: 1 route from  $T_1$  to  $T_2$ , 3 routes from  $T_2$  to  $T_3$ , hence only 3 routes.

Case 2: There are 2 routes from each city to the next, at each city, Gandalf has 2 choices to make, hence 2 \* 2 \* 2 = 8.