Nathan is a mathematician at a famous university who often sees patterns in the world around him. One day he notices that his office number, which happens to be 224 , has an interesting property: it can be written as a sum of non-negative powers of its digits. In particular, he observes that

Nameplate image by PSDgraphics; Used with permission

$$
224=2^{5}+2^{7}+4^{3}
$$

Nathan wonders what other numbers have this property, and, for any such number, in how many different ways it can be expressed like this. More precisely, if n is a positive integer with base-10 digits $d_{1} d_{2} \ldots d_{k}$, where d_{1} is the most significant digit, he would like to know how many tuples of non-negative integers ($e_{1}, e_{2}, \ldots, e_{k}$) there are such that

$$
n=d_{1}^{e_{1}}+d_{2}^{e_{2}}+\ldots+d_{k}^{e_{k}}
$$

For $n=224$, the answer is 2 , since the tuples $(5,7,3)$ and $(7,5,3)$ both work, but no others do.

Nathan has turned to you for help with this challenge. Since $0^{e}=0$ for any positive exponent, and $1^{e}=1$ for any non-negative exponent, you only need to consider numbers with digits in $\{2,3, \ldots, 9\}$. Remember that $p^{0}=1$ for any positive integer, p.

Input

The input consists of a single positive integer, n, with $1<n<10000000$. Each digit of n is between 2 and 9 , inclusive.

Output

Output a single integer: the number of ways n can be written as a sum of non-negative integer powers of its digits.

Sample Input 1

$$
224
$$

Sample Input 2

225

Sample Input 3

9967749

Sample Output 1

2

Sample Output 2

0

Sample Output 3

42

CPU Time limit \qquad
Memory limit
1024 MB

Downloads
Sample data files

Author
Liam Keliher

Source
2022 Atlantic Canadian Programming Competition

License
(c) Ev-sA

