Chapter 1

Digital Systems and Binary Numbers

1

1

DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present
technological period as the digital age. Digital systems are used in communication, busi-
ness transactions, traffic control, spacecraft guidance, medical treatment, weather mon-
itoring, the Internet, and many other commercial, industrial, and scientific enterprises.
We have digital telephones, digital televisions, digital versatile discs, digital cameras,
handheld devices, and, of course, digital computers. We enjoy music downloaded to our
portable media player (e.g., iPod Touch™) and other handheld devices having high-
resolution displays. These devices have graphical user interfaces (GUIs), which enable
them to execute commands that appear to the user to be simple, but which, in fact,
involve precise execution of a sequence of complex internal instructions, Most, if not all,
of these devices have a special-purpose digital computer embedded within them. The
most striking property of the digital computer is its generality. It can follow a sequence
of instructions, called a program, that operates on given data. The user can specify and
change the program or the data according to the specific need. Because of this flexibil-
ity, general-purpose digital computers can perform a variety of information-processing
tasks that range over a wide spectrum of applications.

One characteristic of digital systems is their ability to represent and manipulate dis-
crete elements of information. Any set that is restricted to a finite number of elements
contains discrete information. Examples of discrete sets are the 10 decimal digits, the
26 letters of the alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early
digital computers were used for numeric computations. In this case, the discrete ele-
ments were the digits. From this application, the term digital computer emerged. Dis-
crete elements of information are represented in a digital system by physical quantities

1, from their posi-
m right to left. In
oefficients:

script value j gives
lust be multiplied.

a_, + 107%a_,

se it uses 10 digits
em is a different
dnly two possible
-adix, e.g., 2, and
imber. The radix
Jsitive powers of
:nt of the binary
e coefficients by

272 =126.75

ressed in a base-r

ween numbers of
subscript equal to
:nt makes it obvi-

= (5114)10

il number system
f an octal number
imber in a power

So

from the decimal
ilphabet are used
:ater than 10. For
rits are borrowed

Section 1.2 Binary Numbers 5

from the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11,
12,13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F);s = 11 X 16° + 6 X 16> + 5 X 16! + 15 X 16° = (46,687)y,

The hexadecimal system is used commonly by designers to represent long strings of bits
in the addresses, instructions, and data in digital systems. For example, B65F is used to
represent 1011011001010000.

As noted before, the digits in a binary number are called bits. When a bit is equal to
0, it does not contribute to the sum during the conversion. Therefore, the conversion
from binary to decimal can be obtained by adding only the numbers with powers of two
corresponding to the bits that are equal to 1. For example,

(110101), = 32 + 16 + 4 + 1 = (53)yq

There are four 1’s in the binary number. The corresponding decimal number is the sum
of the four powers of two. Zero and the first 24 numbers obtained from 2 to the power of
n are listed in Table 1.1. In computer work, 210 is referred to as K (kilo),2%° as M (mega),
2% as G (giga),and 2°° as T (tera). Thus, 4K = 2!% = 4,096 and 16M = 22* = 16,777216.
Computer capacity is usually given in bytes. A byte is equal to eight bits and can accom-
modate (i.e., represent the code of) one keyboard character. A computer hard disk with
four gigabytes of storage has a capacity of 4G = 2% bytes (approximately 4 billion bytes).
A terabyte is 1024 gigabytes, approximately 1 trillion bytes.

Arithmetic operations with numbers in base 7 follow the same rules as for decimal
numbers. When a base other than the familiar base 10 is used, one must be careful to
use only the r-allowable digits. Examples of addition, subtraction, and multiplication of
two binary numbers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: 1100111 subtrahend: —100111 multiplier: X 101
sum: 1010100 difference: 000110 1011
é 0000
partial product: 1011
product: 110111
Table 1.1
Powers of Two
n 2" n 2" n 2"
0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1,024 (1K) 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 (4K) 20 1,048,576 (1M)
5 32 13 8,192 21 ' 2,097152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

6

1.3

Chapter 1 Digital Systems and Binary Numbers

The sum of two binary numbers is calculated by the same rules as in decimal, except
that the digits of the sum in any significant position can be only 0 or 1. Any carry
obtained in a given significant position is used by the pair of digits one significant posi-
tion higher. Subtraction is slightly more complicated. The rules are still the same as in
decimal, except that the borrow in a given significant position adds 2 to a minuend digit.
(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple:
The multiplier digits are always 1 or 0; therefore, the partial products are equal either
to a shifted (left) copy of the multiplicand or to 0.

NUMBER-BASE CONVERSIONS

Representations of a number in a different radix are said to be equivalent if they have
the same decimal representation. For example, (0011)g and (1001), are equivalent—both
have decimal value 9. The conversion of a number in base r to decimal is done by
expanding the number in a power series and adding all the terms as shown previously.
We now present a general procedure for the reverse operation of converting a decimal
number to a number in base r. If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction part, since each part must be
converted differently. The conversion of a decimal integer to a number in base r is done
by dividing the number and all successive quotients by r and accumulating the remain-
ders. This procedure is best illustrated by example.

EXAMPLE 1.1

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20
and a remainder of W Then the quotient is again divided by 2 to give a new quotient and
remainder. The process is continued until the integer quotient becomes 0.The coefficients
of the desired binary number are obtained from the remainders as follows:

Integer Remainder Coefficient

Quotient
41/2 = 20 + 1 ag =1
20/2 = 10 + 0 a =0
10/2 = 5 + 0 a, =0
M\N = 2 + W az = 1
2/2 = 1 + 0 a3 =10
H\N - 0 =+ W as = 1

Therefore, the answer is (41)1g = (a5a4a3a001ap); = (101001),.

EXAMPLE 1.2

EXAMPLE 1.3

Secti

The arithmetic process can be manipula

Integer Rems
41
20
10 {

5 {
2
1
0

Conversion from decimal integers to any b
that division is done by r instead of 2.

Convert decimal 153 to octal. The require
an integer quotient of 19 and a remainder
quotient of 2 and a remainder of 3. Finall)
a remainder of 2. This process can be conx

153
19
2
0
The conversion of a decimal fraction t

to that used for integers. However, multipl
instead of remainders are accumulated. A,

Convert (0.6875)1 to binary. First, 0.6875 is
Then the new fraction is multiplied by 2 to g
is continued until the fraction becomes

accuracy. The coefficients of the binary nur

Integer
0.6875 X 2 = 1
03750 X 2 = 0
0.7500 X 2 = 1
0.5000 X 2 = 1

in decimal, except
0 or 1. Any carry
ne significant posi-
still the same as in
to a minuend digit.
plication is simple:
ts are equal either

valent if they have
: equivalent—both
ecimal is done by
shown previously.
nverting'a decimal
t, it is necessary to
each part must be
er in base r is done
llating the remain-

:ger quotient of 20
1new quotient and
§ 0.The coefficients
lows:

“oefficient
ag =1
a =0
a, =0
a3 =1
ag =
as =

EXAMPLE 1.2

EXAMPLE 1.3

Section 1.3 Number-Base Conversions 7

The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 | 1 101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except
that division is done by r instead of 2.
i

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give
an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer
quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and
a remainder of 2. This process can be conveniently manipulated as follows:

153

19 1

2 3

0 | 2= (231)

The conversion of a decimal fraction to binary is accomplished by a method similar
to that used for integers. However, multiplication is used instead of division, and integers
instead of remainders are accumulated. Again, the method is best explained by example.

m

Convert (0.6875);, to binary. First, 0.6875 is multiplied by 2 to give an integer and a fraction.
Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits has sufficient
accuracy. The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction Coefficient
0.6875 x 2 = 1 + 0.3750 aq =1
03750 X 2 = 0 + 0.7500 a,=290
0.7500 X 2 = 1 + 0.5000 a3;=1
0.5000 X 2 = 1 + 0.0000 a, =1

6 Chapter 1 Digital Systems and Binary Numbers

The sum of two binary numbers is calculated by the same rules as in decimal, except _ The a
that the digits of the sum in any significant position can be only 0 or 1. Any carry
obtained in a given significant position is used by the pair of digits one significant posi-
tion higher. Subtraction is slightly more complicated. The rules are still the same as in
decimal, except that the borrow in a given significant position adds 2 to a minuend digit.
(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple: I
The multiplier digits are always 1 or 0; therefore, the partial products are equal either :
to a shifted (left) copy of the multiplicand or to 0. !

1.3 NUMBER-BASE CONVERSIONS

Conversi
Representations of a number in a different radix are said to be equivalent if they have that divis
the same decimal representation. For example, (0011)g and (1001), are equivalent—both
have decimal value 9. The conversion of a number in base r to decimal is done by .
expanding the number in a power series and adding all the terms as shown previously. I EXAMPLE 1.
We now present a general procedure for the reverse operation of converting a decimal 4|
number to a number in base 7. If the number includes a radix point, it is necessary to Convert «
separate the number into an integer part and a fraction part, since each part must be : an mtege:
converted differently. The conversion of a decimal integer to a number in base r is done quotient «
by dividing the number and all successive quotients by r and accumulating the remain- a remainc
ders. This procedure is best illustrated by example.
Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20
. 1 L .o . . « The co
and a remainder of 3. Then the quotient is again divided by 2 to give a new quotient and
. : . to that use
remainder. The process is continued until the Integer quotient becomes 0. The coefficients instead of

of the desired binary number are obtained from the remainders as follows:

Integer Remainder Coefficient .
Quotient g ! EXAMPLE 1.3

41/2 = 20 + 1 a, =1 Convert (0
2 Then the i

20/2 = 10 + L a =0 is continu

10/2 = 5 + 0 a =0 . accuracy. T

5/2 = 2 + 1 a =1

2/2 = 1 + 0 a5 =0 0.6

1/2 = 0 + 1 as =1 0.2

Therefore, the answer is (41),, = (asasazapaiap), = (101001),. 0.5

in decimal, except
0 or 1. Any carry
2¢ significant posi-
still the same as in
to aminuend digit.
plication is simple:
ts are equal either

valent if they have
: equivalent—both
ecimal is done by
shown previously.
averting a decimal
, it is necessary to
each part must be
21 in base ris done
llating the remain-

;ger quotient of 20
1 new quotient and

s 0. The coefficients
OWS:
~oefficient

ag = 1

a = 0

a, = O

as = 1

as = 0

as = 1

EXAMPLE 1.2

EXAMPLE 1.3

Section 1.3 Number-Base Conversions 7

The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1 101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except
that division is done by r instead of 2.
=

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give
an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer
quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and
a remainder of 2. This process can be conveniently manipulated as follows:

153 |

19 1

2 3

0 2 = (231)g

The conversion of a decimal fraction to binary is accomplished by a method similar
to that used for integers. However, multiplication is used instead of division, and integers
instead of remainders are accumulated. Again, the method is best explained by example.

|4

Convert (0.6875); to binary. First, 0.6875 is multiplied by 2 to give an integer and a fraction.
Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits has sufficient
accuracy. The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction Coefficient
0.6875 X 2 = 1 + 0.3750 ay, =1
03750 X 2 = 0 + 0.7500 a,=0
0.7500 X 2 = 1 + 0.5000 a3 =
0.5000 x 2 = 1 + 0.0000 ay =1

8 Chapter 1 Digital Systems and Binary Numbers

Therefore, the answer is (0.6875)19 = (0. a_; a_y a_3 a_g), = (0.1011),.

To convert a decimal fraction to a number expressed in base 7 a similar procedure is
used. However, multiplication is by r instead of 2, and the coefficients found from the
integers may range in value from 0 to r — 1 instead of 0 and 1.

EXAMPLE 1.4

Convert (0.513)y, to octal.

0.513 X 8 = 4.104
0104 X 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5.248
0.248 X 8 = 1.984
0.984 X 8 = 7.872
The answer, to seven significant figures, is obtained from the integer part of the products:
(0.513),9 = (0.406517 ...)g

The conversion of decimal numbers with both integer and fraction parts is done by
converting the integer and the fraction separately and then combining the two answers.
Using the results of Examples 1.1 and 1.3, we obtain

(41.6875)15 = (101001.1011),
From Examples 1.2 and 1.4, we have
(153.513)19 = (231.406517)g

1.4 OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important role in digi-
tal computers, because shorter patterns of hex characters are easier to recognize than long
patterns of 1’s and 0’s. Since 2° = 8 and 2* = 16, each octal digit corresponds to three
binary digits and each hexadecimal digit corresponds to four binary digits. The first 16 num-
bers in the decimal, binary, octal, and hexadecimal number systems are listed in Table 1.2.

'The conversion from binary to octal is easily accomplished by partitioning the binary
number into groups of three digits each, starting from the binary point and proceeding
to the left and to the right. The corresponding octal digit is then assigned to each group.
The following example illustrates the procedure:

(10 110 001 101 011 - 111 100 000 110), = (26153.7406)
2 6 1 5 3 7 4 0 6

Ce
di

re

pr
ea
il

as
is
so

OOWQMVHO = AO a8, a3 QIAVN = AOHOHHVN

action to a number expressed in base 1, a similar procedure is
ition is by r instead of 2, and the coefficients found from the
1e from O to r — 1 instead of 0 and 1.

0.513 X 8 = 4.104
0.104 X 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5.248
0.248 X 8 = 1.984
0.984 x 8 = 7.872

i

o

icant figures, is obtained from the integer part of the products:

nal numbers with both integer and fraction parts is done by
the fraction separately and then combining the two answers.
dles 1.1 and 1.3, we obtain

(41.6875), = (101001.1011),

1.4, we have

(153.513);9 = (231.406517)

ADECIMAL NUMBERS

binary, octal, and hexadecimal plays an important role in digi-
ier patterns of hex characters are easier to recognize than long
e2’=8and 2 = 16, each octal digit corresponds to three
ecimal digit corresponds to four binary digits. The first 16 num-
rctal, and hexadecimal number systems are listed in Table 1.2.

ary to octal is easily accomplished by partitioning the binary
e digits each, starting from the binary point and proceeding

[he corresponding octal digit is then assigned to each group.
strates the procedure:

011 - 111 100 000 110), = (26153.7406),
3 7 4 0 6

Table 1.2
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Conversion from binary to hexadecimal is similar, except that the binary number is
divided into groups of four digits:

(10 1100 0110 1011 - 1111 0010), = (2C6B.F2);
2 C 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily
remembered from the values listed in Table 1.2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding
proceduré. Each octal digit is converted to its three-digit binary equivalent. Similarly,
each hexadecimal digit is converted to its four-digit binary equivalent. The procedure is
illustrated in the following examples:

(673.124)g = (110 111 011 - 001 010 100),
6 7 3 1 2 4
and
(306.D);6 = (0011 0000 0110 - 1101),
3 0 6 D

Binary numbers are difficult to work with because they require three or four times
as many digits as their decimal equivalents. For example, the binary number 111111111111
is equivalent to decimal 4095, However, digital computers use binary numbers, and it is
sometimes necessary for the human operator or user to communicate directly with the

10

Chapter 1 Digital Systems and Binary Numbers

machine by means of such numbers. One scheme that retains the binary system in the
computer, but reduces the number of digits the human must consider, utilizes the rela-
tionship between the binary number system and the octal or hexadecimal system. By this
method, the human thinks in terms of octal or hexadecimal numbers and performs the
required conversion by inspection when direct communication with the machine is nec-
essary. Thus, the binary number 111111111111 has 12 digits and is expressed in octal as
7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between
people (about binary numbers in the computer), the octal or hexadecimal representa-
tion is more desirable because it can be expressed more compactly with a third or a
quarter of the number of digits required for the equivalent binary number. Thus, most
computer manuals use either octal or hexadecimal numbers to specify binary quantities.
The choice between them is arbitrary, although hexadecimal tends to win out, since it
can represent a byte with two digits.

1.5 COMPLEMENTS OF NUMBERS

Complements are used in digital computers to simplify the subtraction operation and for
logical manipulation. Simplifying operations leads to simpler, less expensive circuits to
implement the operations. There are two types of complements for each base-r system:
the radix complement and the diminished radix complement. The first is referred to as
the r’s complement and the second as the (r — 1)’s complement. When the value of the
base ris substituted in the name, the two types are referred to as the 2’s complement and
I’s complement for binary numbers and the 10’s complement and 9’s complement for
decimal numbers.

Diminished Radix Complement

Given a number N in base r having n digits, the (» — 1)’s complement of N, i.e., its
diminished radix complement, is defined as (r" — 1) — N.For decimal numbers,r = 10
and7 — 1 = 9, so the 9’s complement of N is (10" — 1) — N.In this case, 10" represents
a number that consists of a single 1 followed by n 0’s. 10" — 1 is a number représented
by n 9’s. For example, if n = 4, we have 10* = 10,000 and 10* — 1 = 9999, Tt follows
that the 9’s complement of a decimal number is obtained by subtracting each digit from 9.
Here are some numerical examples:

The 9’s complement of 546700 is 999999 — 546700 = 453299.
The 9°s complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, r =2 and r ~1=1, so the 1’s complement of Nis 2" —1) — N.
Again, 2" is represented by a binary number that consists of a 1 followed byn0%s.2" — 1
is a binary number represented by 7 1’s. For example, if n = 4, we have 2* = (10000),
and2* -1 = (1111),. Thus, the 1°s complement of a binary number is obtained by
subtracting each digit from 1. However, when subtracting binary digits from 1, we can

e —
_

Section 1..

haveeither1 — 0 =10r1 -1 = 0, which cau
1 to 0, respectively. Therefore, the 1’s comples
changing 1’s to 0’s and 0s to 1%. The following .

The 1’s complement of 10
The 1’s complement of 01

The (r ~ 1)’s complement of octal or hexadec
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The 7’s complement of an n-digit number N in ba:
as0for N = 0. Comparing with the (r — 1y’scom
is obtained by adding 1 to the (r — 1)’s complen
Thus, the 10’s complement of decimal 2389 is 761(
1to the 9’s complement value, The 2’s complement o
and is obtained by adding 1 to the 1’s-complement

Since 10 is a number represented by a 1 folloy
complement of N, can be formed also by leavi
subtracting the first nonzero least significant di
significant digits from 9. Thus,

the 10’s complement of 0

and

the 10’s complement of 2

The 10’s complement of the first number is obtain
significant position and subtracting all other digi
second number is obtained by leaving the two le:
ing 7 from 10, and subtracting the other three dig

Similarly, the 2’s complement can be formed
the first 1 unchanged and replacing 1°s with s ¢
nificant digits. For example,

the 2’s complement of 110
and

the 2’s complement of 011(

The 2’s complement of the first number is obtain
0’s and the first 1 unchanged and then replacing 1
four most significant digits. The 2’s complement
leaving the least sienificant 1 nnchanasd and ~aw

nary system in the
1, utilizes the rela-
mal system. By this
s and performs the
he machine is nec-
pressed in octal as
ication between
ecimal representa-
v with a third or a
umber. Thus, most
¢ binary quantities.
to win out, since it

a2 operation and for
tpensive circuits to
:ach base-7 system:
rst is referred to as
en the value of the
’s complement and
’s complement for

ment of N, i.e., its
alnumbers,r = 10
>ase, 10" represents
umber represented
= 9999. 1t follows
1g each digit from 9.

53299.
'87601.

X Nis 2"-1) —N.
vedbyrn0%s.2" — 1
1ave 2% = (10000),
ber is obtained by
gits from 1, we can

Section 1.5 Complements of Numbers 11

have either1 — 0 = 1or1 — 1 = 0, which causes the bit to change from 0 to 1 or from
1 to 0, respectively. Therefore, the 1’s complement of a binary number is formed by
changing 1’s to (’s and 0’s to 1’s. The following are some numerical examples:

The 1’s complement of 1011000 is 0100111
'The 1’s complement of 0101101 is 1010010.

The (r — 1)’s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r’s complement of an r-digit number N in base 7 is defined as r* — N for N # 0 and
as0for N = 0. Comparing with the (» — 1)’s complement, we note that the r’s complement
is obtained by adding 1 to the (r — 1)’s complement, since 7" — N = ["-1)—-N]+1
Thus, the 10’s complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding
1tothe 9’s complement value. The 2’s complement of binary 101100is 010011 + 1 = 010100
and is obtained by adding 1 to the 1’s-complement value.

Since 10 is a number represented by a 1 followed by . 0’s, 10" — N, which is the 10’s
complement of N, can be formed also by leaving all least significant 0’s unchanged,
subtracting the first nonzero least significant digit from 10, and subtracting all higher
significant digits from 9. Thus,

the 10°s complement of 012398 is 987602

and
the 10’s complement of 246700 is 753300

The 10’s complement of the first number is obtained by subtracting 8 from 10 in the least
significant position and subtracting all other digits from 9. The 10s complement of the
second number is obtained by leaving the two least significant 0’s unchanged, subtract-
ing 7 from 10, and subtracting the other three digits from 9.

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and
the first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher sig-
nificant digits. For example,

the 2’s complement of 1101100 is 0010100
and

the 2’s complement of 0110111 is 1001001

The 2’s complement of the first number is obtained by leaving the two least significant
0’s and the first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other
four most significant digits. The 2’s complement of the second number is obtained by
leaving the least significant 1 unchanged and complementing all other digits.

14

1.6

Chapter 1 Digital Systems and Binary Numbers

EXAMPLE 1.8

Repeat Example 1.7 but this time using 1’s complement.
(a) X — Y = 1010100 — 1000011

X = 1010100
1’s complement of Y = + 0111100
Sum = 10010000
End-around carry = + 1
Answer: X — Y = 0010001
(b) Y — X = 1000011 — 1010100
Y = 1000011

1’s complement of X = + 0101011
Sum = 1101110
There is no end carry. Therefore, the answer is ¥ — X = —(1’s complement of 1101110) =

—0010001.
o

Note that the negative result is obtained by taking the 1’s complement of the sum, since
this is the type of complement used. The procedure with end-around carry is also appli-
cable to subtracting unsigned decimal numbers with 9’s complement.

SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to
represent negative integers, we need a notation for negative values. In ordinary arith-
metic, a negative number is indicated by a minus sign and a positive number by a plus
sign. Because of hardware limitations, computers must represent everything with binary
digits. It is customary to represent the sign with a bit placed in the leftmost position of
the number. The convention is to make the sign bit 0 for positive and 1 mo%:@mma/\o.

It is important to realize that both signed and unsigned binary numbers consist of a
string of bits when represented in a computer. The user determines whether the number
is signed or unsigned. If the binary number is signed, then the leftmost bit represents the
sign and the rest of the bits represent the number. If the binary number is assumed to
be unsigned, then the leftmost bit is the most significant bit of the number. For example,
the string of bits 01001 can be considered as 9 (unsigned binary) or as +9 (signed binary)
because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent of
25 when considered as an unsigned number and the binary equivalent of —9 when con-
sidered as a signed number. This is because the 1 that is in the leftmost position designates
a negative and the other four bits represent binary 9. Usually, there is no confusion in
interpreting the bits if the type of representation for the number is known in advance.

Secti

The representation of the signed numbe:
signed-magnitude convention. In this notatio
asymbol (+ or —) or a bit (0 or 1) indicating
numbers used in ordinary arithmetic. When
a computer, it is more convenient to use a
complement system, for representing negativ
ber is indicated by its complement. Where:
number by changing its sign, the signed-comg
its complement. Since positive numbers alw
tion, the complement will always start wit
signed-complement system can use either 1
complement is the most common.

As an example, consider the number 9,r
represented with a sign bit of 0 in the leftmc
lent of 9, which gives 00001001. Note that al
are inserted following the sign bit up to the
represent +9, there are three different ways

signed-magnitude represent
signed-1’s-complement repr.

signed-2’s-complement repr

In signed-magnitude, —9 is obtained from +9
position from 0 to 1. In signed-1’s-compleme:
bits of +9, including the sign bit. The signe
obtained by taking the 2’s complement of th:

Table 1.3 lists all possible four-bit signed b
The equivalent decimal number is also show
bers in all three representations are identic;
signed-2’s-complement system has only one
tive. The other two systems have either a i
encountered in ordinary arithmetic. Note {
leftmost bit position; that is the way we dis
With four bits, we can represent 16 binary 1
1’s-complement representations, there are ¢
numbers, including two zeros. In the 2’s-co
positive numbers, including one zero, and ei;

The signed-magnitude system is used in -
employed in computer arithmetic because o
magnitude. Therefore, the signed-complem.
plement imposes some difficulties and is se
useful as a logical operation, since the cha
logical complement operation, as will be sh.
signed binary arithmetic that follows deals e

Trawe[dwoo-s, z-pousis o) yim Ajeatsnoxa sfeap smof[og 1813 JneuyiLe Areulq pausis
JO UOTSSNOSIp oY 1, "193deys 1xou oY) Ut UMOYS 9q [[IM SB ‘wonerado yusws[dwos [eardor
& 0} Jus[eamba st 7 03 (10 ¢ 03 T jo 23uerp a3} 2outs ‘uonjerado [e2130] © se [nyesn
ST 3] 'suonerado S1eWYILIE 0] PAsn WOP[aS ST pue $aNNOTIp dwos sasodury Juowrsd
-WOJ 8T 9Y, "Pasn A[[eULIOU ST UI)SAS Juawa[dwod-pausls oY) 0105510y, “opnjuSem
oy} pue usis oy jo Futpuey syeredss oy Jo osnedaq snawyiLre 1nduros ur pakordus
oy pIlemime STInq “ONomyjLie ATRUIPIO UI Pasn SI ToysAs opnirugew-pousds oy,
‘sIoquunu 9Anedau 1yJie pue ‘orez auo Suipnpour ‘srequunu sanisod
1816 a1e 21013 ‘uoneyussordor Jsws[dwos-s,z oY) U 's010z 0M] Surpnpouy ‘sroquinu
dAnEdau JySie pue s1oqunu aAnrsod 1y431e are o10y) ‘suonejusesordal jusurs[dwos-s,
94} pue opmuSew-pausdis oy} Uy ‘svquUINu Areurq 97 jussordal ues om S11q INOJ YIIAL
sloqunu samysod oY) woIy wot) ysinSunsip om Aem Ay st jey) ‘uonisod 31q Jsowye]
O} UL T & 9ARY SIoqUINU 9A1E3SU [[B 1BT]) 9JON "ONSy)ire AreurpIo ur parejunosus
1ou Suryietwos ‘) sanedeu € 10 (vanisod v I9Y)10 9ABY SWIOISAS OM] IDYIO YL, ‘9AT)
-150d sAemye st yorym ‘() 107 uonejuasadar suo ATuo sey wio)sAs yewoidwos-s, z-pousis
oY, 'uonisod jsounys| oy} ur () sy pue [eonjuapt ore suonejussaidar 9011 [[e Ul s19q
-wnu aantsod a3 1ey) 910N *90us19301 10§ UMOYS OS[e ST IoquUnu [RUIDap JUS[eAmba oy T,
'suoneiussardar 901y} oY) Ut srequInu Areurq pauds j19-1noj Squssod [[e s1sy £ oqeL
1q uSts oy Surpnpour ‘roqumu sanisod 913 Jo yueweydwos s,z a1y Furye) 4q peureqo
St 6— Jo uonejussarder Juswaidwos-s,z-pausis iy,)1q udts o1 Surpnpdur ‘64 Jo syq
a1 e Sunuswsidmos £q paureiqo ST 6— “Juotuaydmoo-s, 1-pausdis uy - 03 () woIy uonsod
10U 9 Ul 11q uFts oy ATuo Surdueyd 4q 6+ W01y paure}qo sI 6— ‘opmrugen-pousis uy

ITIOTTLT :uonejuasardax Juswsiduros-s,z-pousis
OTIOTITI ‘uonejussaxdor yuswejdmos-s, -pausts
10010001 ‘uonejuasaidar spnyuSew-pousis

111 S0 YIIm ¢— juasardar o) skem TUSISHIP 93IY) I8 912T) ‘64 Juasardar
01 Aem auo Auo s1 210y3 ySnoyiy 1s11y o3 03 dn 31q uSts a1 Sumorroy payosur ore
§.0 ‘21039151 'anfeA € dARY Jsnw siq YIS [Tk ey 910N "T00T0000 SAIS TdTYM ‘6 JO JuU]
-eambs £reurq ay3 £q pamorjoy ‘uontsod jsounya] oy ut () 3o 31q ugrs e 1M pajuasardar
SI 6+ S11q 14510 Yim Areurq ur pajussarder ‘g Iequnu oY) 19pisuod ‘odwexs ue sy
"UOWIIOY JSOW 3} ST Juswajdwos
8.2 U} 1nq uswe[dwos s,z 9y3 10 5,7 9Y) ISY)ID osn Ued wo)sks juowsdwos-pousis
SYL "I9qUINU 9ANESIU € FUNESIPUI ‘T © YIIM 1IB)S sfem[e s Juewsdwos a1y ‘uony
-1s0d 3sowyya] o ur (snyd) o Y jaels skempe sraquinu aapisod sourg Juawa[dwon sy
Surye) £q requmu e sejegou woisAs Juowa[dwod-paudis oty ‘usis s Surdueyo Aq 1oquinu
B $3)830U WoIsAs opnjruew-pousis Y3 SBAIYA "Juswe[dwoo s)1 AQ pajedrpur st 1aq
-Wnu 3ANeJOU € ‘WSS SIy) uf s1aquimu aanedou Sunjuesordar 107 ‘ma)sAs uarapduiod
-pausis oY) se 0) PaLISJaI ‘UID)SAS JUSISHIP € 95N 0] JUSIUSATIOD 210U ST J1 “Io)ndiios e
ut pajuswaydur s1e suonerado onowry)ue USY A "ON9WjLe ATRUIPIO UT pasn SIoquinu
pausis jo uonejusserdar a3 st STy T, "ugis oy Suneotpur (T 10) 11q & 10 (- 10 +)J0quufs ©
PUE SpmIuSety € Jo S)SISu0d Ioqumu o)) ‘UONEIOU STY} U] ‘UOTIULAUOD IpnnuSous-pausis
U3 Se 0} parrojar st s[dwrexa Ise] oY) UI sIoqunu paudis 273 jo uonejuesaidar oy,

"OOUBADE UI UMOUY ST I3QUINU 9y} 10] uonejusseidoar jo odL:
Ul UOISnyuod Ou ST 31213 ‘Aq[ens() ‘¢ Areurq jussaidai sjiq Inc
soreugisep uonisod 1S0uNa] oY) Ul st ey T oY) 28M1BIQ SI ST,
-100 wayM G— Jo JusTeAlnbs Lxeurq oy) pue requmu pausisur
Jo Justeambs Areuiq ay) syuesaxdar TooTT s1Iq Jo Surns oyy
(Areu1q poudis) g+ se 10 (Areurq pougisun) g se parapisuoo aq
‘ordurexe 10 “Tequunu 2y} JO 31q JURSYTUSIS JSOW o1y} SI11q 1801
0} pawmsse st oquinu Areurq 91 Jy “1oquinu o) jueserdor s
o) spuesaxdar 31q Jsounyyaf oY) usy) ‘pousis SI IaquInu AJeulq «
TaquInd o7} I9U19Y SSUTALIAP 1950 oY *1oInduos & ut pajr
€ JO 1SISU0D SI9quNU ATeurq pausisun pue pausis [joq 1ey) <

"9AT1e39U 10} | pue aamisod 10) 11q uSrs o 9B 0] ST U
jo wonsod jsounyzer oy ur peoerd 31q € yym udrs a1 juaserd
Areurq ym Smyy£10as yussarder jsnw sioyndmos ‘suorjejum
snid e £q 19quinu sAn1sod € pue uSis snumw © £q pojeorpur s
-[ILre ATEUIpIO UJ 'sonjea 2A)ESaU 10] UOTIRIOU © poou am ‘s
01 ‘I9A9MOY ‘sIoquiny pousdisun se pajuasoidor aq ued (0x9z ¢

SY3IANANN

oW [dUIoD §,6 YIIM SISQUINU [BUIDOP Pot
-1idde osfe st £11e0 punore-pus ym ampeooxd 37, "pesn Juol
2ouls ‘wns a1} Jo Juews[dwon 8,1 oy Furye) Aq paurejqo SL[T

= (0TTTOT] J0 JvWRIdwod 8,1)— = Y — { SIIomsuR 3} ‘210

OTLIOIT = wng
TT0T0T0 + = X Jo 1uswerdwon s
T10000T =X

00T10TO0T
T000T00 = A — X omsuy
I + = A1185 punoIe-pus
00001001 = wng
00TITI0 + = A Jojudwo[dwod
0010101 =X

1100007 -
‘Juows[dwoo s, 1 Sursn swn s

16

Chapter 1 Digital Systems and Binary Numbers

Table 1.3
Signed Binary Numbers
Signed-2’s Signed-1's Signed
Decimal Complement Complement Magnitude

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 — 1111 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
-4 1100 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110
-7 1001 1000 111
-8 1000 - —

representation of negative numbers. The same procedures can be applied to the

signed-1’s-complement system by including the end-around carry as is done with
unsigned numbers.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of
ordinary arithmetic. If the signs are the same, we add the two magnitudes and give
the sum the common sign. If the signs are different, we subtract the smaler magni-
tude from the larger and give the difference the sign of the larger magnitude. For
example, (+25) + (=37) = —(37 — 25) = —12isdone by subtracting the smaller mag-
nitude, 25, from the larger magnitude, 37 and appending the sign of 37 to the result.
This is a process that requires a comparison of the signs and magnitudes and then per-
forming either addition or subtraction. The same procedure applies to binary numbers
in signed-magnitude representation. In contrast, the rule for adding numbers in the
signed-complement system does not require a comparison or subtraction, but only
addition. The procedure is very simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers represented in
signed-2’s-complement form is obtained from the addition of the two numbers, includ-
ing their sign bits. A carry out of the sign-bit position is discarded.

Sectic

Numerical examples for addition follow:

+ 6 00000110
+13 00001101
+19 00010011

+ 6 00000110
—13 11110011
-7 11111001

Note that negative numbers must be initially i
obtained after the addition is negative, it is in
represented as 11111001, which is the 2s com

In each of the four cases, the operation
included. Any carry out of the sign-bit positi
automatically in 2’s-complement form.

In order to obtain a correct answer, we m
number of bits to accommodate the sum. If we
occupies n + 1 bits, we say that an overflow oc
paper and pencil, an overflow is not a problen
of the page. We just add another 0 to a positive
in the most significant position to extend the n
addition. Overflow is a problem in computer
number is finite, and a result that exceeds the f

The complement form of representing neg
to the signed-magnitude system. To determine t
complement, it is necessary to convert the nw
more familiar form. For example, the signed bii
the leftmost bit is 1. Its 2’s complement is 00
+7. We therefore recognize the original negat

Arithmetic Subtraction

Subtraction of two signed binary numbers whe
form is simple and can be stated as follows:

Take the 2’s complement of the subtrahend

minuend (including the sign bit). A carry o

This procedure is adopted because a subtract

tion operation if the sign of the subtrahenc
following relationship:

(£4) - (+B) = (

(£4) = B) = (

But changing a positive number to a negative

complement of the positive number. The reve

Juowe[dwIos oY) 9sn8Iaq “ONI) OS[E ST 3SIVALI OY, Iequinu dan1sod a1 Jo yusmoayduwios
s, oy} Juryey Aq aUOD A[Ises st Ioqunu aaReSeu € 0} requint dansod e Smduend ng
@H+vF) =@)-¥F)

E)+Ws)=(gH -WF)

:drysuoriefar Surmoroy
oY) 4q pajensuowsp st se ‘pafueyo ST puayenqns ay) jo usis o) J1 uonerado uon
-Ippe Uk 0} padueypd aq ues uoperado uonoenqgns € osnesaq pajdope st ernpasord sm,

“popIeasip st uonsod 31q-uis 913 Jo Jno A1res v *(31q uSrs oy Surpnpour) pusnum
oy} 03 } ppe pue (11q usis sy Suipnour) pusyenqus oyj Jo juswadwos s,z o) ave],
'SMOT[O] Se Pajess aq Ued pue ofdurs st urIo]
Juowo[diuoo-5,Z Uf 318 SI9qUING SANRSOU UM SISqUINU ATeurq poudis om] Jo Uonoenqng

uoIeIIgNS dIPWYIIY

'L— 01 [enba 9q 0} Toquinu 9A1eZoU [RUISLIO YY) 9ZIUF0001 SIOJSISY) OM "L+
jo juepeambe Areulq ay3 s gorym ‘T1T00000 ST Juoua[diuod s,z S1] T ST 11q 1sounjay oY)
98MB53q 2ANEIDU ST [OQTTT T Ioqunu A1eulq pausis oy ‘ojdurexs 10, “ULI0J IRI[IIE] SIOUX
& U1 31 90¢[d 0} 1oquunu 2ANISOd € 0] IqUINT 2} 1I9ATOD 0} AIesS0aU st 11 “Juowaduiod
$,-POUSIS Ul I3qUINU A1 © JO 9N[eA 3T} SUIULISAP O, "WNISAS opmrugett-pausis oy 0}
Pasn 3501} 0} IefTureyun st srequinu sanesou Junuasardar Jo wrioy jusurafdwod ayT,
"P91BPOWLIOdE 9 JOULED | A] dN[RA UL oY) SPIIIXS Jey) J[NSSI B PUE ‘9JIuyy SI I9quUInu
© POy Tey) $}1q JO JoqUINU d1f} 9snesaq s191ndwod ur we[qord e ST MO[JISAQ "UONIPPE
a3 wirogred ULy} pue sIIq | + ¥ 0] IOqUINT) PUjxs 0} uoRisod JueogIusis 1sow a1y uT
Ioquunu 9ANESaU € 0} T ISyjoue 10 oquinu santsod e 03 (1etoue ppe 1snf ap -98ed o1 Jo
YIPIA 23 Aq PSIILII] 10U 91 oM 9snedaq ‘we[qoid e J0U ST MO[ISA0 U ‘uad pue roded
}1M UOnIppe 313 SULI0FISd SUO UIY AN SINIO0 MOJJIOAO UE Jey) ABS oM 'SIIq | + u satdnooo
wns 9Y) pue SI2qUINU Q-1 OM] YIIM 1IB)S 9 JT “WINS 9} 9]EPOUITOIIR 0] S1Iq JO Joquunu
1UQIOINS € Sey JINS2I oY) JBY} 2INSUS JSNUI 9M ‘ISMSUR 1991100 € UIRIQO 0 I9PIO U

"wroy yusura[dwoo-s,z ur A[eoneuioine
aIe synsa1 aAnjedau pue ‘papiedsip st uonisod 119-uds o1 Jo Jno Aires Luy ‘pepnpour
31q udis oy} Yy uonippe st paurioyrad uoneiado oy ‘SosEI INOJ 9Y) JO YOED UJ

1+ Jo yuatus[duwrod sg oy St yorgm ‘TO0TTTTT S8 pojussardar
ST /— ‘ordurexs 10 w10y Juawa]doo-s,z Ul ST J1 ‘9AT}EFAU S| UOLIPPE 91 19)J8 POUTRIGO
s 9y} 1 Jey3 pue wrio) Juowadurod-s, g ur A[[ENIUI 24 JSNUI SISqUINT JANRS9U 18Y) 910N

TOTTOTIT 61— TOOTTTIIT L —
TIOOTITT €1~ TI0OTTITT €1—
OTOTITIT 9 — 0TT00000 9 +
TT100000 L + 11001000 6T+
10TT0000 €1+ TOTT0000 €T+
OT0TIIIT 9 — 0TT00000 9 +

:MO[[03 uonIppe 10§ sofduiexs [eoLIownN

Zl siaquinN Areuirg paubis 9| uondag

-pOPU ‘SIIGUINU 0
u1 pajussardair saq
:SIaquInu A1eUIq I0Y
A[uo inqg ‘votydRnq!
oY} Ul SIaquInu FuT
sTequInu Aleuiq 03 S
-1od uoy} pue sopny!
*)[NS3I 27} 01 LE JO

-Sew 1oTRWIS 1Y) SN
10, "opmyudew 108
-rudew Io[feWS oY}
oAIg pue sepnyude
JO Sa[nI 2y} SMO[|O

UM QUOP SI SB AL
a1 o) perpdde 2q

a

18 Chapter 1 Digital Systems and Binary Numbers

of a negative number in complement form produces the equivalent positive number. To : Binary-Co
see this, consider the subtraction (—6) — (—13) = +7. In binary with eight bits, this

operation is written as (11111010 — 11110011). The subtraction is changed to addition Ah
by taking the 2’s complement of the subtrahend (~13), giving (+13). In binary, this is ' 1ty
11111010 + 00001101 = 100000111. Removing the end carry, we obtain the correct ' tor
answer: 00000111 (+7). ,l .
It is worth noting that binary numbers in the signed-complement system are added | bin
and subtracted by the same basic addition and subtraction rules as unsigned numbers. | the
Therefore, computers need only one common hardware circuit to handle both types of on
arithmetic. This consideration has resulted in the signed-complement system being used I’s
in virtually all arithmetic units of computer systems. The user or programmer must nui
interpret the results of such addition or subtraction differently, depending on whether i .
it is assumed that the numbers are signed or unsigned. mn
coc
the
| by
1.7 BINARY CODES | the
Digital systems use signals that have two distinct values and circuit elements that ;:i
have two stable states. There is a direct analogy among binary signals, binary circuit :
elements, and binary digits. A binary number of n digits, for example, may be repre- dig
sented by n binary circuit elements, each having an output signal equivalent to 0 or 1. 00]
Digital systems represent and manipulate not only binary numbers, but also many .
other discrete elements of information. Any discrete element of information that is bet
distinct among a group of quantities can be represented with a binary code (i.e,, a ! bin
pattern of 0’s and 1’s). The codes must be in binary because, in today’s technology, | tior
only circuits that represent and manipulate patterns of 0’s and 1’s can be manufac- | 185

tured economically for use in computers. However, it must be realized that binary i
codes merely change the symbols, not the meaning of the elements of information [
that they represent. If we inspect the bits of a computer at random, we will find that '
most of the time they represent some type of coded information rather than binary |
numbers.

An n-bit binary code is a group of » bits that assumes up to 2" distinct cpmbinations !
of 1’s and (¥s, with each combination representing one element of the set that is being
coded. A set of four elements can be coded with two bits, with each element assigned
one of the following bit combinations: 00, 01, 10, 11. A set of eight elements requires a
three-bit code and a set of 16 elements requires a four-bit code. The bit combination of ,
an n-bit code is determined from the count in binary from 0 to 2" — 1. Each element |
must be assigned a unique binary bit combination, and no two elements can have the
same value; otherwise, the code assignment will be ambiguous.

Although the minimum number of bits required to code 2" distinct quantities is n, !
there is no maximum number of bits that may be used for a binary code. For example, '
the 10 decimal digits can be coded with 10 bits, and each decimal digit can be assigned l
a bit combination of nine (’s and a 1. In this particular binary code, the digit 6 is assigned |
the bit combination 0001000000. '

|

'mplement form produces the equivalent positive number. To
iraction (—6) — (—13) = +7. In binary with eight bits, this
111010 — 11110011). The subtraction is changed to addition
nent of the subtrahend (-13), giving (+13). In binary, this is
100000111. Removing the end carry, we obtain the correct

dinary numbers in the signed-complement system are added
1e basic addition and subtraction rules as unsigned numbers.
d only one common hardware circuit to handle both types of
ion has resulted in the signed-complement system being used

units of computer systems. The user or programmer must
*h addition or subtraction differently, depending on whether
ibers are signed or unsigned.

ils that have two distinct values and circuit elements that
lere is a direct analogy among binary signals, binary circuit
1s. A binary number of x digits, for example, may be repre-
-elements, each having an output signal equivalent to 0 or 1.
t and manipulate not only binary numbers, but also many
of information. Any discrete element of information that is
f quantities can be represented with a binary code (i.e., a
he codes must be in binary because, in today’s technology,
nt and manipulate patterns of 0’s and 1’s can be manufac-
Ise in computers. However, it must be realized that binary
: symbols, not the meaning of the elements of information
» inspect the bits of a computer at random, we will find that
resent some type of coded information rather than binary

+a group of » bits that assumes up to 2" distinct combinations
ombination representing one element of the set that is being
ents can be coded with two bits, with each element assigned
ombinations: 00, 01, 10, 11. A set of eight elements requires a
f 16 elements requires a four-bit code. The bit combination of
ed from the count in binary from 0 to 2" ~ 1. Each element
€ binary bit combination, and no two elements can have the
3 code assignment will be ambiguous.

n number of bits required to code 2" distinct quantities is #,
aber of bits that may be used for a binary code. For example,
be coded with 10 bits, and each decimal digit can be assigned
0’s and a 1. In this particular binary code, the digit 6 is assigned
000000.

Binary-Coded Decimal Code

Although the binary number system is the most natural system for a computer because
it is readily represented in today’s electronic technology, most people are more accus-
tomed to the decimal system. One way to resolve this difference is to convert decimal
numbers to binary, perform all arithmetic calculations in binary, and then convert the
binary results back to decimal. This method requires that we store decimal numbers in
the computer so that they can be converted to binary. Since the computer can accept
only binary values, we must represent the decimal digits by means of a code that contains
I’s and 0’s. It is also possible to perform the arithmetic operations directly on decimal
numbers when they are stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements
in the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary
code that distinguishes among 10 elements must contain at least four bits, but 6 out of
the 16 possible combinations remain unassigned. Different binary codes can be obtained
by arranging four bits into 10 distinct combinations. The code most commonly used for
the decimal digits is the straight binary assignment listed in Table 1.4. This scheme is
called binary-coded decimal and is commonly referred to as BCD. Other decimal codes
are possible and a few of them are presented later in this section.

Table 1.4 gives the four-bit code for one decimal digit. A number with & decimal
digits will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as
0011 1001 0110, with each group of 4 bits representing one decimal digit. A decimal
number in BCD is the same as its equivalent binary number only when the number is
between 0 and 9. A BCD number greater than 10 looks different from its equivalent
binary number, even though both contain 1’s and 0’s. Moreover, the binary combina-
tions 1010 through 1111 are not used and have no meaning in BCD. Consider decimal
185 and its corresponding value in BCD and binary:

(185)10 = (0001 1000 0101)pcp = (10111001),

Table 1.4
Binary-Coded Decimal (BCD)

Decimal BCD
Symbol Digit

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

oI WNREO

20 Chapter 1 Digital Systems and Binary Numbers
The BCD value has 12 bits to encode the characters of the decimal value, but the equiv- The
alent binary number needs only 8 bits. It is obvious that the representation of a BCD Consid
number needs more bits than its equivalent binary value. However, there is an advantage
in the use of decimal numbers, because computer input and output data are generated
by people who use the decimal system.
It is important to realize that BCD numbers are decimal numbers and not binary
numbers, although they use bits in their representation. The only difference between a
decimal number and BCD is that decimals are written with the symbols 0,1,2, ... ,9
and BCD numbers use the binary code 0000,0001,0010, ... ,1001. The decimal value
is exactly the same. Decimal 10 is represented in BCD with eight bits as 0001 0000 and
decimal 15 as 0001 0101 The corresponding binary values are 1010 and 1111 and have The fir:
only four bits. : carry f«
' produc
digits p
BCD Addition
Consider the addition of two decimal digits in BCD, together with a possible carry Decimal Aritl
from a previous less significant pair of digits. Since each digit does not exceed 9, the
sum cannot be greater than 9 + 9 + 1 = 19, with the 1 being a previous carry. Sup- The reg
pose we add the BCD digits as if they were binary numbers. Then the binary sum will of signe
produce a result in the range from 0 to 19. In binary, this range will be from 0000 to the sig1
10011, but in BCD, it is from 0000 to 1 1001, with the first (i.e., leftmost) 1 being a with fo
carry and the next four bits being the BCD sum. When the binary sum is equal to or designz
less than 1001 (without a carry), the corresponding BCD digit is correct. However, The
when the binary sum is greater than or equal to 1010, the result is an invalid BCD system
digit. The addition of 6 = (0110), to the binary sum converts it to the correct digit and most of
also produces a carry as required. This is because a carry in the most significant bit comple
position of the binary sum and a decimal carry differ by 16 — 10 = 6. Consider the lated fr
following three BCD additions: The
section
4 0100 4 0100 8 1000 is done
+5 +0101 +8 +1000 +9 1001 operati
9 1001 12 1100 17 10001 additio
+0110 +0110 !
10010 10111
In each case, the two BCD digits are added as if they were two binary numbers. If the
binary sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum The 91
and a carry. In the first example, the sum is equal to 9 and is the correct BCD sum. In the 10"
the second example, the binary sum produces an invalid BCD digit. The addition of 0110 carded
produces the correct BCD sum, 0010 (i.e., the number 2), and a carry. In the third the sig
example, the binary sum produces a carry. This condition occurs when the sum is greater previot
than or equal to 16. Although the other four bits are less than 1001, the binary sum The
requires a correction because of the carry. Adding 0110, we obtain the required BCD system,

sum 0111 (i.e., the number 7) and a BCD carry. add it t

g, but the equiv-
ation of a BCD
is an advantage
a are generated

and not binary
‘ence between a
s0,1,2, ...,9
£ decimal value
0001 0000 and
11111 and have

1 possible carry

ot exceed 9, the -

ious carry. Sup-
binary sum will
e from 0000 to
nost) 1 being a
1 is equal to or
rrect. However,
n invalid BCD
orrect digit and
t significant bit
6. Consider the

numbers. If the
srrect BCD sum
ct BCD sum. In
addition of 0110
ry. In the third
1€ sum is greater
the binary sum
: required BCD

Section 1.7 Binary Codes 21

The addition of two n-digit unsigned BCD numbers follows the same procedure.
Consider the addition of 184 + 576 = 760 in BCD:

BCD 1 1
0001 1000 0100 184
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Addo6 0110 0110
BCD sum 0111 0110 0000 760

The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a

, carry for the next pair of digits. The second pair of BCD digits plus a previous carry

produces a digit sum of 0110 and a carry for the next pair of digits. The third pair of
digits plus a carry produces a binary sum of 0111 and does not require a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation
of signed numbers in binary. We can use either the familiar signed-magnitude system or
the signed-complement system. The sign of a decimal number is usually represented
with four bits to conform to the four-bit code of the decimal digits. It is customary to
designate a plus with four 0’s and a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement
system can be either the 9’s or the 10’s complement, but the 10’s complement is the one
most often used. To obtain the 10’s complement of a BCD number, we first take the 9’s
complement and then add 1 to the least significant digit. The 9s complement is calcu-
lated from the subtraction of each digit from 9.

'The procedures developed for the signed-2’s-complement system in the previous
section also apply to the signed-10’s-complement system for decimal numbers. Addition
is done by summing all digits, including the sign digit, and discarding the end carry. This
operation assumes that all negative numbers are in 10’s-complement form. Consider the
addition (+375) + (—240) = +135, done in the signed-complement system:

0 375
+9 760
0 135

The 9 in the leftmost position of the second number represents a minus, and 9760 is
the 10°s complement of 0240. The two numbers are added and the end carry is dis-
carded to obtain +135. Of course, the decimal numbers inside the computer, including
the sign digits, must be in BCD. The addition is done with BCD digits as described
previously.

"The subtraction of decimal numbers, either unsigned or in the signed-10’s-complement
system, is the same as in the binary case: Take the 10’s complement of the subtrahend and
add it to the minuend. Many computers have special hardware to perform arithmetic

Chapter 1 Digital Systems and Binary Numbers

calculations directly with decimal numbers in BCD. The user of the computer can specify
programmed instructions to perform the arithmetic operation with decimal numbers
directly, without having to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different
codes can be formulated by arranging four bits into 10 distinct combinations. BCD and
three other representative codes are shown in Table 1.5. Each code uses only 10 out of
a possible 16 bit combinations that can be arranged with four bits. The other six unused
combinations have no meaning and should be avoided.

BCD and the 2421 code are examples of weighted codes. In a weighted code, each bit
position is assigned a weighting factor in such a way that each digit can be evaluated by
adding the weights of all the 1’s in the coded combination. The BCD code has weights
of 8,4,2,and 1, which correspond to the power-of-two values of each bit. The bit assign-
ment 0110, for example, is interpreted by the weights to represent decimal 6 because
8X0+4X1+2X1+1X0=6.The bit combination 1101, when weighted by the
respective digits 2421, gives the decimal equivalent of 2 X1+ 4 X 1+ 2X0+1x1="7.
Note that some digits can be coded in two possible ways in the 2421 code. For instance,

decimal 4 can be assigned to bit combination 0100 or 1010, since both combinations add
up to a total weight of 4.

Table 1.5
Four Different Binary Codes for the Decimal Digits

Decimal BCD

Digit 8421 2421 Excess-3 8,4 -2, -1

0 0000 0000 0011 0000
1 0001 0001 0100 0111
2 0010 0010 0101 0110
3 0011 0011 0110 0101
4 0100 0100 0111 0100

5 0101 1011 1000 1011 :
6 0110 1100 1001 1010
7 0111 1101 1010 1001
8 1000 1110 1011 1000
9 1001 1111 1100 1111
1010 0101 0000 0001
Unused 1011 0110 0001 0010
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1100
nations 1110 1001 1110 1101
1111 1010 1111 1110

BCD adders add BCD values directly, digit by ¢
to binary. However, it is necessary to add 6 to tk
adders require significantly more hardware and r
conventional binary adders [5].

The 2421 and the excess-3 codes are examplex
codes have the property that the 9’s compleme;
directly by changing 1’s to 0’s and 0’s to 1’s (ie,b
tern). For example, decimal 395 is represented in |
The 9’s complement of 604 is represented as 1001
by complementing each bit of the code (as with the

The excess-3 code has been used in some ol
complementing property. Excess-3 is an unweigh
bination is obtained from the corresponding bin:
code is not self-complementing.

The 8,4, —2, —1 code is an example of assignin
to a decimal code. In this case, the bit combination
is calculated from 8 X 0 + 4 X 1 + (=2) X 1 +

Gray Code

The output data of many physical systems are q
data must be converted into digital form before
Continuous or analog information is converted i1
log-to-digital converter. It is sometimes conveni
Table 1.6 to represent digital data that have bee
advantage of the Gray code over the straight bi
one bit in the code group changes in going from o
in going from 7 to 8, the Gray code changes fr«
changes, from 0 to 1; the other three bits remain
numbers the change from 7 to 8 will be from 011
to change values.

The Gray code is used in applications in which th
generated by the hardware may produce an error o1
onc number to the next. If binary numbers are usec
1000 may produce an intermediate erroneous num
bit takes longer to change than do the values of the
ous consequences for the machine using the inforn
problem, since only one bit changes its value during

A typical application of the Gray code is the rej
tinuous change in the angular position of a shaft. T
and each segment is assigned a number. If adjace:
with the Gray-code sequence, ambiguity is elimin
and the value encoded by the sensor.

(puter can specify
Jecimal numbers

1. Many different
1ations. BCD and
:es only 10 out of
other six unused

ted code, each bit
1 be evaluated by
code has weights
it. The bit assign-
ecimal 6 because
weighted by the
2X0+1X1=17
ade. For instance,
:ombinations add

Section 1.7 Binary Codes 23

BCD adders add BCD values directly, digit by digit, without converting the numbers
to binary. However, it is necessary to add 6 to the result if it is greater than 9. BCD
adders require significantly more hardware and no longer have a speed advantage of
conventional binary adders [5]. v

The 2421 and the excess-3 codes are examples of self-complementing codes. Such
codes have the property that the 9’s complement of a decimal number is obtained
directly by changing 1’s to 0’s and 0’s to 1’s (i.e., by complementing each bit in the pat-
tern). For example, decimal 395 is represented in the excess-3 code as 0110 1100 1000.
The 9’s complement of 604 is represented as 1001 0011 0111, which is obtained simply
by complementing each bit of the code (as with the 1’s complement of binary numbers).

The excess-3 code has been used in some older computers because of its self-
complementing property. Excess-3 is an unweighted code in which each coded com-
bination is obtained from the corresponding binary value plus 3. Note that the BCD
code is not self-complementing.

The 8,4, —2, —1 code is an example of assigning both positive and negative weights
to a decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and
is calculated from 8 X 0 + 4 X 1 + (=2) X 1 + (-1) X 0 = 2.

Gray Code

The output data of many physical systems are quantities that are continuous. These
data must be converted into digital form before they are applied to a digital system.
Continuous or analog information is converted into digital form by means of an ana-
log-to-digital converter. It is sometimes convenient to use the Gray code shown in
Table 1.6 to represent digital data that have been converted from analog data. The
advantage of the Gray code over the straight binary number sequence is that only
one bit in the code group changes in going from one number to the next. For example,
in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit
changes, from 0 to 1; the other three bits remain the same. By contrast, with binary
numbers the change from 7 to 8 will be from 0111 to 1000, which causes all four bits
to change values.

The Gray code is used in applications in which the normal sequence of binary numbers
generated by the hardware may produce an error or ambiguity during the transition from
one number to the next. If binary numbers are used, a change, for example, from 0111 to
1000 may produce an intermediate erroneous number 1001 if the value of the rightmost
bit takes longer to change than do the values of the other three bits. This could have seri-
ous consequences for the machine using the information. The Gray code eliminates this
problem, since only one bit changes its value during any transition between two numbers.

A typical application of the Gray code is the representation of analog data by a con-
tinuous change in the angular position of a shaft. The shaft is partitioned into segments,
and each segment is assigned a number. If adjacent segments are made to correspond
with the Gray-code sequence, ambiguity is eliminated between the angle of the shaft
and the value encoded by the sensor.

24

Chapter 1 Digital Systems and Binary Numbers

Table 1.6
Gray Code

Gray Decimal

Code Equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

ASCII Character Code

Many applications of digital computers require the handling not only of numbers, but
also of other characters or symbols, such as the letters of the alphabet. For instance,
consider a high-tech company with thousands of employees. To represent the names

and other pertinent information, it is necessary to formulate a binary code for the let--

ters of the alphabet. In addition, the same binary code must represent numerals and
special characters (such as $). An alphanumeric character set is a set of elements that
includes the 10 decimal digits, the 26 letters of the alphabet, and a number of special
characters. Such a set contains between 36 and 64 elements if only capital letters are
included, or between 64 and 128 elements if both uppercase and lowercase letters are
included. In the first case, we need a binary code of six bits, and in the second, we need
a binary code of seven bits. .

The standard binary code for the alphanumeric characters is the American Standard
Code for Information Interchange (ASCII), which uses seven bits to code 128 charac-
ters, as shown in Table 1.7 The seven bits of the code are designated by b, through b5,
with b, the most significant bit. The letter A, for example, is represented in ASCII as
1000001 (column 100, row 0001). The ASCII code also contains 94 graphic characters
that can be printed and 34 nonprinting characters used for various control functions.
The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lower-
case letters (a through z), the 10 numerals (0 through 9), and 32 special printable char-
acters, such as %, *, and §.

Table 1.7

American Standard Code for Information Inte

bsb;bb; 000 001 010 or
0000 NUL DLE SP 0
0001 SOH DC1 ! 1
0010 STX DC2 “ 2
0011 ETX DC3 # 3
0100 EOT DC4 $ 4
0101 ENQ NAK % 5
0110 ACK SYN & 6
0111 BEL ETB ¢ 7
1000 BS CAN (8
1001 HT EM) 9
1010 LF SUB * :
1011 vT ESC + :
1100 FF FS , <
1101 CR GS — =
1110 SO RS . >
1111 SI Us / g
Control Chi
NUL Null DLE
soH Start of heading DC1
STX Start of text DC2
ETX End of text DC:
EOT End of transmission DC¢
ENQ Enquiry NAI
ACK Acknowledge SYD™
BEL Bell ETE
BS Backspace CAl
HT Horizontal tab EM
LF Line feed SUL
VT Vertical tab ESC
FF Form feed FS
CR Carriage return GS
SO Shift out RS
SI Shift in Us
SP Space DE

The 34 control characters are designated in th
are listed again below the table with their funct
for routing data and arranging the printed text i
of control characters: format effectors, informa

Table 1.6 Table 1.7

Gray Code American Standard Code for Information Interchange (ASCHI)
Gray Decimal bbb
socs SRR " bebshb; 000 001 010 011 100 101 110 111
0000 0 S
0001 1 0000 NUL DLE SP 0 @ P p
0011 2 0001 SOH DC1 ! 1 A Q a q
0010 3 0010 STX DC2 “ 2 B R b r
0110 4 0011 ETX DC3 # 3 C S c s
0111 5 0100 EOT DC4 $ 4 D T d t
0101 6 0101 ENQ NAK % 5 E U e u
0100 7 . 0110 ACK SYN & 6 F \'% f v
1100 8 0111 BEL ETB ‘ 7 G - W g w
1101 9 1000 BS CAN (8 H X h X
1111 10 1001 HT EM) 9 I Y i y
1110 11 1010 LF SUB * : J z j z
1010 12 1011 VI ESC + ; K [k {
1011 13) 1100 FF ES , < L \ 1 |
1001 14 1101 CR GS - = M] m }
1000 15 1110 SO RS : > N A n ~

1111 SI Us / ? O - o DEL
Control Characters
NUL Null DLE Data-link escape

ital computers require the handling not only of numbers, but m% VHM mﬂmn oM heading WMW Woﬁ.oa SESW w

or symbols, such as the letters of the alphabet. For instance, ETX mw_mﬁom HMHH DC3 UM“MMM MMMNM_ 3

ipany with thousands of employees. To represent the names EOT End of transmission DC4 Device control 4

mation, it is necessary to formulate a binary code for the let- ENQ Enquiry NAK Negative acknowledge

ddition, the same binary code must represent numerals and ACK Acknowledge SYN Synchronous idle

s $). An alphanumeric character set is a set of elements that BEL Bell ETB End-of-transmission block

ligits, the 26 letters of the alphabet, and a number of special BS Backspace CAN Cancel

itains between 36 and 64 elements if only capital letters are HT Horizontal tab EM End of medium

uid 128 elements if both uppercase and lowercase letters are LF Line feed SUB Substitute

,we need a binary code of six bits, and in the second, we need VT Vertical tab ESC Escape

ts. FF Form feed FS File separator

'de for the alphanumeric characters is the American Standard CR Carriage return GS Group separator

erchange (ASCII), which uses seven bits to code 128 charac- SO Shift out RS Record separator

! The seven bits of the code are designated by b, through b,, St Shift in Us Unit separator

wt bit. The letter A4, for example, is represented in ASCII as SP Space DEL Delete

w 0001). The ASCII code also contains 94 graphic characters

34 nonprinting characters used for various control functions. The 34 control characters are designated in the ASCII table with abbreviated names, They

msist of the 26 uppercase letters (A through Z), the 26 lower-
the 10 numerals (0 through 9), and 32 special printable char-

).

are listed again below the table with their functional names. The control characters are used
for routing data and arranging the printed text into a prescribed format. There are three types
of control characters: format effectors, information separators, and communication-control

26

Chapter 1 Digital Systems and Binary Numbers

characters. Format effectors are characters that control the layout of printing. They include
the familiar word processor and typewriter controls such as backspace (BS), horizontal tabu-
lation (HT), and carriage return (CR). Information separators are used to separate the data
into divisions such as paragraphs and pages. They include characters such as record separator
(RS) and file separator (FS). The communication-control characters are useful during
the transmission of text between remote devices so that it can be distinguished from other
messages using the same communication channel before it and after it. Examples of
communication-control characters are STX (start of text) and ETX (end of text), which are
used to frame a text message transmitted through a communication channel.

ASCII is a seven-bit code, but most computers manipulate an eight-bit quantity
as a single unit called a byte. Therefore, ASCII characters most often are stored one
per byte. The extra bit is sometimes used for other purposes, depending on the appli-
cation. For example, some printers recognize eight-bit ASCII characters with the
most significant bit set to 0. An additional 128 eight-bit characters with the most
significant bit set to 1 are used for other symbols, such as the Greek alphabet or italic
type font.

Error-Detecting Code

To detect errors in data communication and processing, an eighth bit is sometimes added
to the ASCII character to indicate its parity. A parity bit is an extra bit included with a
message to make the total number of 1’s either even or odd. Consider the following two
characters and their even and odd parity:

With even parity With odd parity
ASCII A = 1000001 01000001 11000001
ASCII T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an
even number of 1’s in the character for even parity or an odd number of 1’s in the char-
acter for odd parity. In general, one or the other parity is adopted, with even parity being
more common.

The parity bit is helpful in detecting errors during the transmission of information
from one location to another. This function is handled by generating an even parity bit
at the sending end for each character. The eight-bit characters that include parity bits
are transmitted to their destination. The parity of each character is then checked at the
receiving end. If the parity of the received character is not even, then at least one bit has
changed value during the transmission. This method detects one, three, or any odd com-
bination of errors in each character that is transmitted. An even combination of errors,
however, goes undetected, and additional error detection codes may be needed to take
care of that possibility.

What is done after an error is detected depends on the particular application. One
possibility is to request retransmission of the message on the assumption that the error
was random and will not occur again. Thus, if the receiver detects a parity error, it sends

Section 1.8

back the ASCII NAK (negative acknowledge
parity eight bits 10010101. If no error is de
(acknowledge) control character, namely, 000
NAK by transmitting the message again unti
number of attempts, the transmission is still ir
ator to check for malfunctions in the transmis

BINARY STORAGE AND REG

k_

The binary information in a digital compute:
medium for storing individual bits. A binary
states and is capable of storing one bit (0 o1
recelves excitation signals that set it to one ¢
a physical quantity that distinguishes betwee
in a cellis 1 when the cell is in one stable stat
state.

Registers

A register is a group of binary cells. A register
of information that contains n bits. The state o
each bit designating the state of one cell in 1
function of the interpretation given to the info:
a 16-bit register with the following binary con

1100001111

A register with 16 cells can be in one of 216 pc
tent of the register represents a binary integ
number from 0 to 2'® — 1. For the particular ¢
is the binary equivalent of the decimal numb
register stores alphanumeric characters of a
register is any two meaningful characters. For-
in the eighth most significant bit position, the |
leftmost eight bits) and I (the rightmost eight
tent of the register to be four decimal digits
content of the register is a four-digit decimal
holds the decimal number 9,096. The conter
because the bit combination 1100 is not assig
ple, it is clear that a register can store discrete «
bit configuration may be interpreted differer
on the application.

s are characters that control the layout of printing. They include
r and typewriter controls such as backspace (BS), horizontal tabu-
eturn (CR). Information separators are used to separate the data
sraphs and pages. They include characters such as record separator
FS). The communication-control characters are useful during
‘tween remote devices so that it can be distinguished from other
- communication channel before it and after it. Examples of
aracters are STX (start of text) and ETX (end of text), which are
ge transmitted through a communication channel.

code, but most computers manipulate an eight-bit quantity
ryte. Therefore, ASCII characters most often are stored one
sometimes used for other purposes, depending on the appli-
ne printers recognize eight-bit ASCII characters with the
to 0. An additional 128 eight-bit characters with the most
» used for other symbols, such as the Greek alphabet or italic

‘mmunication and processing, an eighth bit is sometimes added
yindicate its parity. A parity bit is an extra bit included with a
{ number of 1’s either even or odd. Consider the following two
and odd parity:

With even parity With odd parity
1000001 01000001 11000001
1010100 11010100 01010100

L extra bit in the leftmost position of the code to produce an
character for even parity or an odd number of 1’s in the char-
ieral, one or the other parity is adopted, with even parity being

1l in detecting errors during the transmission of information
her. This function is handled by generating an even parity bit
ch character. The eight-bit characters that include parity bits
sstination. The parity of each character is then checked at the
7 of the received character is not even, then at least one bit has
transmission. This method detects one, three, or any odd com-
character that is transmitted. An even combination of errors,
L, and additional error detection codes may be needed to take

error is detected depends on the particular application. One
transmission of the message on the assumption that the error
yccur again. Thus, if the receiver detects a parity error, it sends

back the ASCII NAK (negative acknowledge) control character consisting of an even-
parity eight bits 10010101. If no error is detected, the receiver sends back an ACK
(acknowledge) control character, namely,00000110. The sending end will respond to an
NAK by transmitting the message again until the correct parity is received. If, after a
number of attempts, the transmission is still in error, a message can be sent to the oper-
ator to check for malfunctions in the transmission path.

BINARY STORAGE AND REGISTERS

The binary information in a digital computer must have a physical existence in some
medium for storing individual bits. A binary cell is a device that possesses two stable
states and is capable of storing one bit (0 or 1) of information. The input to the cell
receives excitation signals that set it to one of the two states. The output of the cell is
a physical quantity that distinguishes between the two states. The information stored

in a cell is 1 when the cell is in one stable state and 0 when the cell is in the other stable
state.

Registers

A register is a group of binary cells. A register with n cells can store any discrete quantity
of information that contains » bits. The state of a register is an n-tuple of 1’s and 0’s, with
each bit designating the state of one cell in the register. The content of a register is a
function of the interpretation given to the information stored in it. Consider, for example,
a 16-bit register with the following binary content:

1100001111001001

A register with 16 cells can be in one of 2'° possible states. If one assumes that the con-
tent of the register represents a binary integer, then the register can store any binary
number from 0 to 2!¢ — 1. For the particular example shown, the content of the register
is the binary equivalent of the decimal number 50,121. If one assumes instead that the
register stores alphanumeric characters of an eight-bit code, then the content of the
register is any two meaningful characters. For the ASCII code with an even parity placed
in the eighth most significant bit position, the register contains the two characters C (the
leftmost eight bits) and I (the rightmost eight bits). If, however, one interprets the con-
tent of the register to be four decimal digits represented by a four-bit code, then the
content of the register is a four-digit decimal number. In the excess-3 code, the register
holds the decimal number 9,096. The content of the register is meaningless in BCD,
because the bit combination 1100 is not assigned to any decimal digit. From this exam-
ple, it s clear that a register can store discrete elements of information and that the same

bit configuration may be interpreted differently for different types of data depending
on the application.

