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What is DP?

» Wikipedia definition: “method for solving complex problems
by breaking them down into simpler subproblems”

» This definition will make sense once we see some examples
— Actually, we'll only see problem solving examples today
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Steps for Solving DP Problems

1. Define subproblems
2. Write down the recurrence that relates subproblems

3. Recognize and solve the base cases

» Each step is very important!
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1-dimensional DP Example

» Problem: given n, find the number of different ways to write
n as the sum of 1, 3, 4

» Example: for n = 5, the answer is 6

1-dimensional DP
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1-dimensional DP Example

» Define subproblems
— Let D,, be the number of ways to write n as the sum of 1, 3, 4

» Find the recurrence
— Consider one possible solution n = x1 + x5 + - 4+ x,,
— If z,,, = 1, the rest of the terms must sum ton — 1
— Thus, the number of sums that end with z,, = 1 is equal to
anl
— Take other cases into account (z,, = 3, &, = 4)
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1-dimensional DP Example

» Recurrence is then
Dn = Dn—l + Dn—3 + Dn—4
» Solve the base cases
- Dy=1

— D,, =0 for all negative n
— Alternatively, can set: Dy = D1 = D5y =1, and D3 =2

» We're basically done!
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Implementation

D[0] = D[1] = D[2] = 1; D[3] = 2;
for(i = 4; i <= n; i++)
D[i] = D[i-1] + D[i-3] + D[i-4];

> Very short!
» Extension: solving this for huge n, say n ~ 102
— Recall the matrix form of Fibonacci numbers
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POJ 2663: Tri Tiling

» Given n, find the number of ways to fill a 3 x n board with
dominoes

» Here is one possible solution for n = 12

1-dimensional DP
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POJ 2663: Tri Tiling

» Define subproblems
— Define D,, as the number of ways to tile a 3 x n board

» Find recurrence
— Uuuhhhhh...

1-dimensional DP
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1-dimensional DP

Troll Tiling
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Defining Subproblems

» Obviously, the previous definition didn't work very well

» D,’'s don't relate in simple terms

» What if we introduce more subproblems?
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1-dimensional DP

Defining Subproblems
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Finding Recurrences
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Finding Recurrences

» Consider different ways to fill the nth column
— And see what the remaining shape is
> Exercise:

— Finding recurrences for A,,, B,, Cp
— Just for fun, why is B,, and E,, always zero?

» Extension: solving the problem for n x m grids, where n is
small, say n < 10

— How many subproblems should we consider?

1-dimensional DP
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2-dimensional DP Example

» Problem: given two strings x and y, find the longest common
subsequence (LCS) and print its length
> Example:
— x: ABCBDAB
— y: BDCABC

— "BCAB" is the longest subsequence found in both sequences, so
the answer is 4

2-dimensional DP
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Solving the LCS Problem

» Define subproblems
— Let D;; be the length of the LCS of z1._; and y1__;
> Find the recurrence
— If &; = y;, they both contribute to the LCS
» Dijj=Dj—1,-1+1
— Otherwise, either x; or y; does not contribute to the LCS, so
one can be dropped
» D;; =max{D;_1,,D; j—1}
— Find and solve the base cases: D;g = Dy; =0

2-dimensional DP
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for(i =
= 0; j <= m; j++) D[0][j]

for(j

for(i =

Implementation

0; i <= n; i++) D[i][0]

I
o O

1; 1 <= n; i++) {

for(j = 1; j <=m; j++) {

2-dimensional DP

if(x[i] == y[jD)
D[i][j] = D[i-11[j-11 + 1;
else
D[i][j] = max(D[i-1]1[j], D[il[j-11);
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Interval DP Example

» Problem: given a string © = 1.5, find the minimum number
of characters that need to be inserted to make it a palindrome

> Example:
— x: Ab3bd
— Can get "dAb3bAd" or “Adb3bdA"” by inserting 2 characters
(one ‘d’, one ‘A")
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Interval DP Example

» Define subproblems
— Let D;; be the minimum number of characters that need to be
inserted to make x;.. ; into a palindrome
» Find the recurrence
— Consider a shortest palindrome ¥, containing z;..;
— Either y1 = x; or yr, = x; (why?)
— Ya..k—1 is then an optimal solution for ;1. ; or ;. j_1 or
Titl..j—1
> Last case possible only if y1 = yr = ;s = z;

Interval DP

23



Interval DP Example

» Find the recurrence

Di — {1 +min{D;t1;,Dij1} x;i # x;
i =
! Dit15-1 T; = xj

» Find and solve the base cases: D;; = D;;—1 = 0 for all ¢

» The entries of D must be filled in increasing order of j — i
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Interval DP Example

// £ill in base cases here
for(t = 2; t <= n; t++)
for(i = 1, j = t; j <= n; i++, j++)
// £ill in D[i][j] here

» Note how we use an additional variable t to fill the table in
correct order

> And yes, for loops can work with multiple variables

Interval DP
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An Alternate Solution

» Reverse z to get z%
» The answer is n — L, where L is the length of the LCS of x
and z

» Exercise: Think about why this works

Interval DP
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Tree DP Example

» Problem: given a tree, color nodes black as many as possible
without coloring two adjacent nodes

» Subproblems:
— First, we arbitrarily decide the root node r
— B,: the optimal solution for a subtree having v as the root,
where we color v black
— W,: the optimal solution for a subtree having v as the root,
where we don’t color v
— Answer is max{B,, W,}

Tree DP
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Tree DP Example

» Find the recurrence
— Crucial observation: once v's color is determined, subtrees can

be solved independently
— If v is colored, its children must not be colored

B,=1+ Y W,

u€children(v)

— If v is not colored, its children can have any color

W,=1+ Y max{B,,W,}

u€children(v)

» Base cases: leaf nodes

Tree DP
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Subset DP Example

» Problem: given a weighted graph with n nodes, find the
shortest path that visits every node exactly once (Traveling
Salesman Problem)

» Wait, isn't this an NP-hard problem?

— Yes, but we can solve it in O(n?2") time
— Note: brute force algorithm takes O(n!) time

Subset DP
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Subset DP Example

» Define subproblems
— Dg,: the length of the optimal path that visits every node in
the set .S exactly once and ends at v
— There are approximately n2™ subproblems
— Answer is min,ecy Dy, where V' is the given set of nodes

» Let's solve the base cases first
— For each node v, D,y , =0

Subset DP
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Subset DP Example

» Find the recurrence

— Consider a path that visits all nodes in S exactly once and
ends at v

— Right before arriving v, the path comes from some u in
S —{v}

— And that subpath has to be the optimal one that covers
S — {v}, ending at u

— We just try all possible candidates for u

Dg, = ue{g}%v} (Ds_{v},u + cost(u, ’U))

Subset DP



Working with Subsets

> When working with subsets, it's good to have a nice
representation of sets
> ldea: Use an integer to represent a set

— Concise representation of subsets of small integers {0, 1,..

— If the ith (least significant) digit is 1, ¢ is in the set
— If the ith digit is 0, 7 is not in the set
— e.g., 19 = 0100115 in binary represent a set {0,1,4}

Subset DP
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Using Bitmasks

v

Union of two sets x and y: x | vy

v

Intersection: x & y
Symmetric difference: x = y
Singleton set {i}: 1 << 1

Membership test: x & (1 << i) !=

v

v

v

Subset DP
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Conclusion

» Wikipedia definition: “a method for solving complex problems
by breaking them down into simpler subproblems”

— Does this make sense now?

» Remember the three steps!

1. Defining subproblems
2. Finding recurrences
3. Solving the base cases

Subset DP

36



	Dynamic Programming
	1-dimensional DP
	2-dimensional DP
	Interval DP
	Tree DP
	Subset DP

