Dynamic Programming

Jaehyun Park

CS 97sl
Stanford University

June 29, 2015



Outline

Dynamic Programming

Dynamic Programming



What is DP?

» Wikipedia definition: “method for solving complex problems
by breaking them down into simpler subproblems”

» This definition will make sense once we see some examples
— Actually, we'll only see problem solving examples today

Dynamic Programming



Steps for Solving DP Problems

1. Define subproblems
2. Write down the recurrence that relates subproblems

3. Recognize and solve the base cases

» Each step is very important!

Dynamic Programming



Outline

1-dimensional DP

1-dimensional DP



1-dimensional DP Example

» Problem: given n, find the number of different ways to write
n as the sum of 1, 3, 4

» Example: for n = 5, the answer is 6

1-dimensional DP

5

1+1+14+1+1
1+1+3
1+3+1
3+1+1

144

441



1-dimensional DP Example

» Define subproblems
— Let D,, be the number of ways to write n as the sum of 1, 3, 4

» Find the recurrence
— Consider one possible solution n = x1 + x5 + - 4+ x,,
— If z,,, = 1, the rest of the terms must sum ton — 1
— Thus, the number of sums that end with z,, = 1 is equal to
anl
— Take other cases into account (z,, = 3, &, = 4)

1-dimensional DP



1-dimensional DP Example

» Recurrence is then
Dn = Dn—l + Dn—3 + Dn—4
» Solve the base cases
- Dy=1

— D,, =0 for all negative n
— Alternatively, can set: Dy = D1 = D5y =1, and D3 =2

» We're basically done!

1-dimensional DP



Implementation

D[0] = D[1] = D[2] = 1; D[3] = 2;
for(i = 4; i <= n; i++)
D[i] = D[i-1] + D[i-3] + D[i-4];

> Very short!
» Extension: solving this for huge n, say n ~ 102
— Recall the matrix form of Fibonacci numbers

1-dimensional DP



POJ 2663: Tri Tiling

» Given n, find the number of ways to fill a 3 x n board with
dominoes

» Here is one possible solution for n = 12

1-dimensional DP

10



POJ 2663: Tri Tiling

» Define subproblems
— Define D,, as the number of ways to tile a 3 x n board

» Find recurrence
— Uuuhhhhh...

1-dimensional DP

11



1-dimensional DP

Troll Tiling

12



Defining Subproblems

» Obviously, the previous definition didn't work very well

» D,’'s don't relate in simple terms

» What if we introduce more subproblems?

1-dimensional DP

13



1-dimensional DP

Defining Subproblems

14



1-dimensional DP

Finding Recurrences

15



Finding Recurrences

» Consider different ways to fill the nth column
— And see what the remaining shape is
> Exercise:

— Finding recurrences for A,,, B,, Cp
— Just for fun, why is B,, and E,, always zero?

» Extension: solving the problem for n x m grids, where n is
small, say n < 10

— How many subproblems should we consider?

1-dimensional DP

16



2-dimensional DP

2-dimensional DP

Outline

17



2-dimensional DP Example

» Problem: given two strings x and y, find the longest common
subsequence (LCS) and print its length
> Example:
— x: ABCBDAB
— y: BDCABC

— "BCAB" is the longest subsequence found in both sequences, so
the answer is 4

2-dimensional DP

18



Solving the LCS Problem

» Define subproblems
— Let D;; be the length of the LCS of z1._; and y1__;
> Find the recurrence
— If &; = y;, they both contribute to the LCS
» Dijj=Dj—1,-1+1
— Otherwise, either x; or y; does not contribute to the LCS, so
one can be dropped
» D;; =max{D;_1,,D; j—1}
— Find and solve the base cases: D;g = Dy; =0

2-dimensional DP

19



for(i =
= 0; j <= m; j++) D[0][j]

for(j

for(i =

Implementation

0; i <= n; i++) D[i][0]

I
o O

1; 1 <= n; i++) {

for(j = 1; j <=m; j++) {

2-dimensional DP

if(x[i] == y[jD)
D[i][j] = D[i-11[j-11 + 1;
else
D[i][j] = max(D[i-1]1[j], D[il[j-11);

20



Interval DP

Interval DP

Outline

21



Interval DP Example

» Problem: given a string © = 1.5, find the minimum number
of characters that need to be inserted to make it a palindrome

> Example:
— x: Ab3bd
— Can get "dAb3bAd" or “Adb3bdA"” by inserting 2 characters
(one ‘d’, one ‘A")

Interval DP 22



Interval DP Example

» Define subproblems
— Let D;; be the minimum number of characters that need to be
inserted to make x;.. ; into a palindrome
» Find the recurrence
— Consider a shortest palindrome ¥, containing z;..;
— Either y1 = x; or yr, = x; (why?)
— Ya..k—1 is then an optimal solution for ;1. ; or ;. j_1 or
Titl..j—1
> Last case possible only if y1 = yr = ;s = z;

Interval DP

23



Interval DP Example

» Find the recurrence

Di — {1 +min{D;t1;,Dij1} x;i # x;
i =
! Dit15-1 T; = xj

» Find and solve the base cases: D;; = D;;—1 = 0 for all ¢

» The entries of D must be filled in increasing order of j — i

Interval DP 24



Interval DP Example

// £ill in base cases here
for(t = 2; t <= n; t++)
for(i = 1, j = t; j <= n; i++, j++)
// £ill in D[i][j] here

» Note how we use an additional variable t to fill the table in
correct order

> And yes, for loops can work with multiple variables

Interval DP

25



An Alternate Solution

» Reverse z to get z%
» The answer is n — L, where L is the length of the LCS of x
and z

» Exercise: Think about why this works

Interval DP

26



Tree DP

Tree DP

Outline

27



Tree DP Example

» Problem: given a tree, color nodes black as many as possible
without coloring two adjacent nodes

» Subproblems:
— First, we arbitrarily decide the root node r
— B,: the optimal solution for a subtree having v as the root,
where we color v black
— W,: the optimal solution for a subtree having v as the root,
where we don’t color v
— Answer is max{B,, W,}

Tree DP

28



Tree DP Example

» Find the recurrence
— Crucial observation: once v's color is determined, subtrees can

be solved independently
— If v is colored, its children must not be colored

B,=1+ Y W,

u€children(v)

— If v is not colored, its children can have any color

W,=1+ Y max{B,,W,}

u€children(v)

» Base cases: leaf nodes

Tree DP

29



Subset DP

Subset DP

Outline

30



Subset DP Example

» Problem: given a weighted graph with n nodes, find the
shortest path that visits every node exactly once (Traveling
Salesman Problem)

» Wait, isn't this an NP-hard problem?

— Yes, but we can solve it in O(n?2") time
— Note: brute force algorithm takes O(n!) time

Subset DP

31



Subset DP Example

» Define subproblems
— Dg,: the length of the optimal path that visits every node in
the set .S exactly once and ends at v
— There are approximately n2™ subproblems
— Answer is min,ecy Dy, where V' is the given set of nodes

» Let's solve the base cases first
— For each node v, D,y , =0

Subset DP

32



Subset DP Example

» Find the recurrence

— Consider a path that visits all nodes in S exactly once and
ends at v

— Right before arriving v, the path comes from some u in
S —{v}

— And that subpath has to be the optimal one that covers
S — {v}, ending at u

— We just try all possible candidates for u

Dg, = ue{g}%v} (Ds_{v},u + cost(u, ’U))

Subset DP



Working with Subsets

> When working with subsets, it's good to have a nice
representation of sets
> ldea: Use an integer to represent a set

— Concise representation of subsets of small integers {0, 1,..

— If the ith (least significant) digit is 1, ¢ is in the set
— If the ith digit is 0, 7 is not in the set
— e.g., 19 = 0100115 in binary represent a set {0,1,4}

Subset DP

3

34



Using Bitmasks

v

Union of two sets x and y: x | vy

v

Intersection: x & y
Symmetric difference: x = y
Singleton set {i}: 1 << 1

Membership test: x & (1 << i) !=

v

v

v

Subset DP

0

35



Conclusion

» Wikipedia definition: “a method for solving complex problems
by breaking them down into simpler subproblems”

— Does this make sense now?

» Remember the three steps!

1. Defining subproblems
2. Finding recurrences
3. Solving the base cases

Subset DP

36



	Dynamic Programming
	1-dimensional DP
	2-dimensional DP
	Interval DP
	Tree DP
	Subset DP

