
Dynamic Programming

Jaehyun Park

CS 97SI
Stanford University

June 29, 2015



Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

Dynamic Programming 2



What is DP?

◮ Wikipedia definition: “method for solving complex problems
by breaking them down into simpler subproblems”

◮ This definition will make sense once we see some examples

– Actually, we’ll only see problem solving examples today

Dynamic Programming 3



Steps for Solving DP Problems

1. Define subproblems

2. Write down the recurrence that relates subproblems

3. Recognize and solve the base cases

◮ Each step is very important!

Dynamic Programming 4



Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

1-dimensional DP 5



1-dimensional DP Example

◮ Problem: given n, find the number of different ways to write
n as the sum of 1, 3, 4

◮ Example: for n = 5, the answer is 6

5 = 1 + 1 + 1 + 1 + 1

= 1 + 1 + 3

= 1 + 3 + 1

= 3 + 1 + 1

= 1 + 4

= 4 + 1

1-dimensional DP 6



1-dimensional DP Example

◮ Define subproblems

– Let Dn be the number of ways to write n as the sum of 1, 3, 4

◮ Find the recurrence

– Consider one possible solution n = x1 + x2 + · · · + xm

– If xm = 1, the rest of the terms must sum to n − 1
– Thus, the number of sums that end with xm = 1 is equal to

Dn−1

– Take other cases into account (xm = 3, xm = 4)

1-dimensional DP 7



1-dimensional DP Example

◮ Recurrence is then

Dn = Dn−1 + Dn−3 + Dn−4

◮ Solve the base cases

– D0 = 1
– Dn = 0 for all negative n

– Alternatively, can set: D0 = D1 = D2 = 1, and D3 = 2

◮ We’re basically done!

1-dimensional DP 8



Implementation

D[0] = D[1] = D[2] = 1; D[3] = 2;

for(i = 4; i <= n; i++)

D[i] = D[i-1] + D[i-3] + D[i-4];

◮ Very short!

◮ Extension: solving this for huge n, say n ≈ 1012

– Recall the matrix form of Fibonacci numbers

1-dimensional DP 9



POJ 2663: Tri Tiling

◮ Given n, find the number of ways to fill a 3 × n board with
dominoes

◮ Here is one possible solution for n = 12

1-dimensional DP 10



POJ 2663: Tri Tiling

◮ Define subproblems

– Define Dn as the number of ways to tile a 3 × n board

◮ Find recurrence

– Uuuhhhhh...

1-dimensional DP 11



Troll Tiling

1-dimensional DP 12



Defining Subproblems

◮ Obviously, the previous definition didn’t work very well

◮ Dn’s don’t relate in simple terms

◮ What if we introduce more subproblems?

1-dimensional DP 13



Defining Subproblems

1-dimensional DP 14



Finding Recurrences

1-dimensional DP 15



Finding Recurrences

◮ Consider different ways to fill the nth column

– And see what the remaining shape is

◮ Exercise:

– Finding recurrences for An, Bn, Cn

– Just for fun, why is Bn and En always zero?

◮ Extension: solving the problem for n × m grids, where n is
small, say n ≤ 10

– How many subproblems should we consider?

1-dimensional DP 16



Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

2-dimensional DP 17



2-dimensional DP Example

◮ Problem: given two strings x and y, find the longest common
subsequence (LCS) and print its length

◮ Example:

– x: ABCBDAB

– y: BDCABC

– “BCAB” is the longest subsequence found in both sequences, so
the answer is 4

2-dimensional DP 18



Solving the LCS Problem

◮ Define subproblems

– Let Dij be the length of the LCS of x1...i and y1...j

◮ Find the recurrence
– If xi = yj , they both contribute to the LCS

◮ Dij = Di−1,j−1 + 1

– Otherwise, either xi or yj does not contribute to the LCS, so
one can be dropped

◮ Dij = max{Di−1,j , Di,j−1}

– Find and solve the base cases: Di0 = D0j = 0

2-dimensional DP 19



Implementation

for(i = 0; i <= n; i++) D[i][0] = 0;

for(j = 0; j <= m; j++) D[0][j] = 0;

for(i = 1; i <= n; i++) {

for(j = 1; j <= m; j++) {

if(x[i] == y[j])

D[i][j] = D[i-1][j-1] + 1;

else

D[i][j] = max(D[i-1][j], D[i][j-1]);

}

}

2-dimensional DP 20



Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

Interval DP 21



Interval DP Example

◮ Problem: given a string x = x1...n, find the minimum number
of characters that need to be inserted to make it a palindrome

◮ Example:

– x: Ab3bd

– Can get “dAb3bAd” or “Adb3bdA” by inserting 2 characters
(one ‘d’, one ‘A’)

Interval DP 22



Interval DP Example

◮ Define subproblems

– Let Dij be the minimum number of characters that need to be
inserted to make xi...j into a palindrome

◮ Find the recurrence

– Consider a shortest palindrome y1...k containing xi...j

– Either y1 = xi or yk = xj (why?)
– y2...k−1 is then an optimal solution for xi+1...j or xi...j−1 or

xi+1...j−1

◮ Last case possible only if y1 = yk = xi = xj

Interval DP 23



Interval DP Example

◮ Find the recurrence

Dij =

{

1 + min{Di+1,j , Di,j−1} xi 6= xj

Di+1,j−1 xi = xj

◮ Find and solve the base cases: Dii = Di,i−1 = 0 for all i

◮ The entries of D must be filled in increasing order of j − i

Interval DP 24



Interval DP Example

// fill in base cases here

for(t = 2; t <= n; t++)

for(i = 1, j = t; j <= n; i++, j++)

// fill in D[i][j] here

◮ Note how we use an additional variable t to fill the table in
correct order

◮ And yes, for loops can work with multiple variables

Interval DP 25



An Alternate Solution

◮ Reverse x to get xR

◮ The answer is n − L, where L is the length of the LCS of x

and xR

◮ Exercise: Think about why this works

Interval DP 26



Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

Tree DP 27



Tree DP Example

◮ Problem: given a tree, color nodes black as many as possible
without coloring two adjacent nodes

◮ Subproblems:

– First, we arbitrarily decide the root node r

– Bv: the optimal solution for a subtree having v as the root,
where we color v black

– Wv: the optimal solution for a subtree having v as the root,
where we don’t color v

– Answer is max{Br, Wr}

Tree DP 28



Tree DP Example

◮ Find the recurrence

– Crucial observation: once v’s color is determined, subtrees can
be solved independently

– If v is colored, its children must not be colored

Bv = 1 +
∑

u∈children(v)

Wu

– If v is not colored, its children can have any color

Wv = 1 +
∑

u∈children(v)

max{Bu, Wu}

◮ Base cases: leaf nodes

Tree DP 29



Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

Subset DP 30



Subset DP Example

◮ Problem: given a weighted graph with n nodes, find the
shortest path that visits every node exactly once (Traveling
Salesman Problem)

◮ Wait, isn’t this an NP-hard problem?

– Yes, but we can solve it in O(n22n) time
– Note: brute force algorithm takes O(n!) time

Subset DP 31



Subset DP Example

◮ Define subproblems

– DS,v: the length of the optimal path that visits every node in
the set S exactly once and ends at v

– There are approximately n2n subproblems
– Answer is minv∈V DV,v, where V is the given set of nodes

◮ Let’s solve the base cases first

– For each node v, D{v},v = 0

Subset DP 32



Subset DP Example

◮ Find the recurrence

– Consider a path that visits all nodes in S exactly once and
ends at v

– Right before arriving v, the path comes from some u in
S − {v}

– And that subpath has to be the optimal one that covers
S − {v}, ending at u

– We just try all possible candidates for u

DS,v = min
u∈S−{v}

(

DS−{v},u + cost(u, v)
)

Subset DP 33



Working with Subsets

◮ When working with subsets, it’s good to have a nice
representation of sets

◮ Idea: Use an integer to represent a set

– Concise representation of subsets of small integers {0, 1, . . .}
– If the ith (least significant) digit is 1, i is in the set
– If the ith digit is 0, i is not in the set
– e.g., 19 = 010011(2) in binary represent a set {0, 1, 4}

Subset DP 34



Using Bitmasks

◮ Union of two sets x and y: x | y

◮ Intersection: x & y

◮ Symmetric difference: x ˆ y

◮ Singleton set {i}: 1 << i

◮ Membership test: x & (1 << i) != 0

Subset DP 35



Conclusion

◮ Wikipedia definition: “a method for solving complex problems
by breaking them down into simpler subproblems”

– Does this make sense now?

◮ Remember the three steps!

1. Defining subproblems
2. Finding recurrences
3. Solving the base cases

Subset DP 36


	Dynamic Programming
	1-dimensional DP
	2-dimensional DP
	Interval DP
	Tree DP
	Subset DP

